Answer:
-21
Step-by-step explanation:
We are told to find f(x) + g(x) for x= -3. Therefore, we must evaluate f(-3) and g(-3), then add them together.
First, evaluate f(-3).
f(x)=4x-7
To find f(-3), we need to substitute -3 in for x.
f(-3)= 4(-3)-7
Solve according to PEMDAS: Parentheses, Exponents, Multiplication, Division, Addition, Subtraction First, multiply 4 and -3.
f(-3)= -12-7
Next, subtract 7 from -12
f(-3)= -19
Next, find g(-3).
g(x)=2x+4
To find g(-3), substitute -3 in for x.
g(-3)= 2(-3)+4
Solve according to PEMDAS. First, multiply 2 and -3.
g(-3)= -6+4
Next, add -6 and 4
g(-3)= -2
Now, we can add f(-3) and g(-3) together.
f(-3) + g(-3)
f(-3)= -19
g(-3)= -2
-19 + -2
Add
-21
To solve the inequality, you need to isolate/get x by itself:
171 > -6x Divide -6 on both sides [dividing/multiplying a negative number on
-28.5 < x [dividing/multiplying a negative number in an inequality causes the sign (<, >, ≤, ≥) to flip]
-28.5 < x [x is a number greater than -28.5]
So your graph should have an open circle at -28.5 (the first small line next to -28), and the arrow pointing to the right since x is greater than -28.5 (increasing) The 1st option is your answer
[use the o---> and put it at -28.5]
Answer:
8 inches.
Step-by-step explanation:
From the statement we have that they first made two identical square pyramids, each with a base area of 100 square inches.
Ab = s ^ 2 = 100
Therefore each side would be:
s = (100) ^ (1/2)
s = 10
So, side of the square base = 10 inches
Then they tell us that they glued the bases of the pyramids together to form the precious stone. The surface area of the gemstone is 520 square inches, so for a single pyramid it would be:
Ap = 520/2 = 260
For an area of the square pyramid we have the following equation:
Ap = 2 * x * s + s ^ 2
Where x is the height of each triangular surface and s is the side of the square base
Replacing we have:
260 = 2 * x * 10 + 10 ^ 2
20 * x + 100 = 260
20 * x = 160
x = 160/20
x = 8
Therefore, the value of x is 8 inches.
Answer:
b. -3
Step-by-step explanation:
i hope this helps :)