Answer:
Step-by-step explanation:
One of the easier approaches to graphing a linear equation such as this one is to solve it for y, which gives us both the slope of the line and the y-intercept.
x-3y=-6 → -3y = -x - 6, or 3y = x + 6.
Dividing both sides by 3, we get y = (1/3)x + 2.
So the slope of this line is 1/3 and the y-intercept is 2.
Plot a dot at (0, 2). This is the y-intercept. Now move your pencil point from that dot 3 spaces to the right and then 1 space up. Draw a line thru these two dots. End.
Alternatively, you could use the intercept method. We have already found that the y-intercept is (0, 2). To find the x-intercept, let y = 0. Then x = -6, and the x-intercept is (-6, 0).
Plot both (0, 2) and (-6, 0) and draw a line thru these points. Same graph.
The answer would be 48.
All you would have to do is multiply the height (the straight line) and the length which is the 6.
Answer:
the picture is blurry
Step-by-step explanation:
Answer:
0.8041 = 80.41% probability that a given battery will last between 2.3 and 3.6 years
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
A certain type of storage battery lasts, on average, 3.0 years with a standard deviation of 0.5 year
This means that 
What is the probability that a given battery will last between 2.3 and 3.6 years?
This is the p-value of Z when X = 3.6 subtracted by the p-value of Z when X = 2.3. So
X = 3.6



has a p-value of 0.8849
X = 2.3



has a p-value of 0.0808
0.8849 - 0.0808 = 0.8041
0.8041 = 80.41% probability that a given battery will last between 2.3 and 3.6 years