1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
liubo4ka [24]
4 years ago
10

What is the factorization of the trinominal below -x^2+2x +48

Mathematics
2 answers:
vovikov84 [41]4 years ago
4 0

Answer:

(-x-6)(x-8)

Step-by-step explanation:

nikklg [1K]4 years ago
3 0

Answer:

x=8

x=-6

Step-by-step explanation:

As We Have -x^2+2x +48=0

By Using Ist And Last Method (factorization Method)

=> -x^2+8x-6x+48=0

Taking x and +6 common

=>x(-x+8)+6(-x+8)=0

Taking -x+8 common

=> -x+8=0 and x+6=0

=>-x+8=0 =>-x+8-8=0-8 (subtracting 8 on both side) => x=8

and

x+6=0 =>x+6-6=0-6 (subtracting 6 on both side) => x=-6

You might be interested in
PLEASE HELP ASAP
KATRIN_1 [288]

Answer:

752.884 cubic feet

Step-by-step explanation:

Brainliest?

5 0
3 years ago
-3+15mx=q <br><br> Solve for m
rjkz [21]

Answer:

m = q+3/15x

step-by-step explanations:

3 0
3 years ago
Solve for X<br> x/7 = -8<br> Please help!!!<br> Worth 20 points!!!<br> I need an answer ASAP!!!
Vikentia [17]

Answer:

x = -56

Step-by-step explanation:

x/7 = -8

Multiply each side by 7

x/7 *7 = -8*7

x = -56

8 0
3 years ago
Uestion
Stella [2.4K]

Check the picture below, so the park looks more or less like so, with the paths in red, so let's find those midpoints.

~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ J(\stackrel{x_1}{-3}~,~\stackrel{y_1}{1})\qquad K(\stackrel{x_2}{1}~,~\stackrel{y_2}{3}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{ 1 -3}{2}~~~ ,~~~ \cfrac{ 3 +1}{2} \right) \implies \left(\cfrac{ -2 }{2}~~~ ,~~~ \cfrac{ 4 }{2} \right)\implies JK=(-1~~,~~2) \\\\[-0.35em] ~\dotfill

~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ L(\stackrel{x_1}{5}~,~\stackrel{y_1}{-1})\qquad M(\stackrel{x_2}{-1}~,~\stackrel{y_2}{-3}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{ -1 +5}{2}~~~ ,~~~ \cfrac{ -3 -1}{2} \right) \implies \left(\cfrac{ 4 }{2}~~~ ,~~~ \cfrac{ -4 }{2} \right)\implies LM=(2~~,~~-2) \\\\[-0.35em] ~\dotfill

~~~~~~~~~~~~\textit{distance between 2 points} \\\\ JK(\stackrel{x_1}{-1}~,~\stackrel{y_1}{2})\qquad LM(\stackrel{x_2}{2}~,~\stackrel{y_2}{-2})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ JKLM=\sqrt{(~~2 - (-1)~~)^2 + (~~-2 - 2~~)^2} \\\\\\ JKLM=\sqrt{(2 +1)^2 + (-2 - 2)^2} \implies JKLM=\sqrt{( 3 )^2 + ( -4 )^2} \\\\\\ JKLM=\sqrt{ 9 + 16 } \implies JKLM=\sqrt{ 25 }\implies \boxed{JKLM=5}

now, let's check the other path, JM and KL

~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ J(\stackrel{x_1}{-3}~,~\stackrel{y_1}{1})\qquad M(\stackrel{x_2}{-1}~,~\stackrel{y_2}{-3}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{ -1 -3}{2}~~~ ,~~~ \cfrac{ -3 +1}{2} \right) \implies \left(\cfrac{ -4 }{2}~~~ ,~~~ \cfrac{ -2 }{2} \right)\implies JM=(-2~~,~~-1) \\\\[-0.35em] ~\dotfill

~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ K(\stackrel{x_1}{1}~,~\stackrel{y_1}{3})\qquad L(\stackrel{x_2}{5}~,~\stackrel{y_2}{-1}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{ 5 +1}{2}~~~ ,~~~ \cfrac{ -1 +3}{2} \right) \implies \left(\cfrac{ 6 }{2}~~~ ,~~~ \cfrac{ 2 }{2} \right)\implies KL=(3~~,~~1) \\\\[-0.35em] ~\dotfill

~~~~~~~~~~~~\textit{distance between 2 points} \\\\ JM(\stackrel{x_1}{-2}~,~\stackrel{y_1}{-1})\qquad KL(\stackrel{x_2}{3}~,~\stackrel{y_2}{1})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ JMKL=\sqrt{(~~3 - (-2)~~)^2 + (~~1 - (-1)~~)^2} \\\\\\ JMKL=\sqrt{(3 +2)^2 + (1 +1)^2} \implies JMKL=\sqrt{( 5 )^2 + ( 2 )^2} \\\\\\ JMKL=\sqrt{ 25 + 4 } \implies \boxed{JMKL=\sqrt{ 29 }}

so the red path will be  5~~ + ~~\sqrt{29} ~~ \approx ~~ \blacksquare~~ 10 ~~\blacksquare

3 0
2 years ago
The length of a rectangle is 4 m longer than its width. if the perimeter of the rectangle is 36 m , find its area.
ycow [4]
Answer:   The area of the rectangle is:  " 77 m² " .

__________________________________________________________
Note:  The formula for the area, "A" of a rectangle:

 →  A  =  L  *  w   ;

                 in which:  
     A = "area (of rectangle)" ; [in units of "m² " ; that is:  "square meters" ] ; 
                                     
     L = length = "(4 + w)" {in units of "meters (m)" } ;  
             
     w = width  {in units of "meters (m)" } ; 
_______________________________________________________

So;  " A = L * w " ;  

Substitute the known expression for the "length, L" ;  & rewrite the formula for the given area of OUR area for the rectangle in OUR GIVEN PROBLEM:

              →  A = (4 + w) * w '' ;
______________________________________________________

Note the formula for the perimeter, "P" ; 

 →  P = 2L + 2w  ; 

↔   2L + 2w = P 

 →  2L + 2w  = 36 m ;
_____________________________________________________
We want to find the "area" , "A" :
_____________________________________________________
Using the formula for the "perimeter, "P" (of the rectangle) ; & given that the perimeter is:  "36" (meters) ;  

 →  2L + 2w  = 36 ;

 →  Let us plug in the values for "Length (L)" & "width (w)" ; 

 →  2(w + 4)  + 2w = 36  ; 

So;   (2*w) + (2*4) + 2w = 36 ;  Solve for "w" ;

    →  2w + 8 + 2w = 36 ; 

    → Combine the "like terms" :

         + 2w + 2w = 4w ; 

   →  And rewrite: 

         4w + 8 = 36 ; 

Now, subtract "8" from EACH SIDE of the equation:

         4w + 8 − 8 = 36 <span>− 8 ; 
</span>
to get: 

         4w = 28 ; 

Now, divide EACH SIDE of the equation by "4" ; 
      to isolate "w" on EACH SIDE of the equation ; & to solve for "w" ; 

         4w / 4 = 28 / 4  ; 

           → w = 7 ;   → The "width" of the rectangle is:  " 7 m " .

Now, we can find the "length" of the rectangle:

The length, "L" , of the rectangle = 4 + w = 4 + 7 = 11 .
      
           →  L = 11 .  →  The "length" of the rectangle is:  " 11 m " .
___________________________________________________
 
Now, we can find the area, "A", of the rectangle.

 A = L * w  =  11 m * 7 m  =  " 77 m² " .

  →  The area of the rectangle is:  " 77 m² <span>" .
</span>__________________________________________________

To check our answer:
__________________________________________________
 
→  " P = 2L + 2w "  ; 

Given that "P = 36 m" ; 

Plug in "36 m" (for "P") ; into the equation ;

and plug in our calculated values for
                        "length, L" (which is "11 m") ; & "width, w" (which is "7 m") ; 

to see if the equation holds true ; that is, to see if both sides of the equation are equal ;
_______________________________________________________  

 →  36 m = ?  2L + 2w ?? ;

 →  36 m = ?  2(11 m) + 2(7 m) ?? ; 

 →  36 m = ?  22 m + 14 m ?? ; 

 →  36 m = ?  36 m ?  Yes! 
__________________________________________________
3 0
3 years ago
Other questions:
  • Figure ABCD is similar to figure MNKL. Enter a proportion that contains BC and KL.
    6·1 answer
  • Mr switzer needs to buy new 1-foot tiles to cover his bathroom floor. The floor is 12 feet long and 8 feet wide. Each square foo
    8·1 answer
  • If h(x)=f(x+k) what is the value of k ?
    11·1 answer
  • 25.7 is what percent of 141?
    10·1 answer
  • Triangle S T U is shown. The length of T U is 21.3 and the length of S U is t. Angle U S T is 118 degrees and angle S T U is 34
    15·2 answers
  • At which of the following points do the two equations f(x)=3x2+5 and g(x)=4x+4 intersect?
    7·1 answer
  • In a Geometry class, the girl to boy ratio is 10 to 2.
    10·2 answers
  • A 20 foot ladder is leaning against a house. It touches the ground 12 feet from the house. How far above the ground does it touc
    6·1 answer
  • Please give me the correct answer.​
    5·2 answers
  • The populations of two cities after t years can be modeled by -150t+50,000 and 50t+75,000. . What is the difference in the popul
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!