The event "Atleast once" is the complement of event "None".
So, the probability that Marvin teleports atleast once per day will the compliment of probability that he does not teleports during the day. Therefore, first we need to find the probability that Marvin does not teleports during the day.
At Morning, the probability that Marvin does not teleport = 2/3
Likewise, the probability tha Marvin does not teleport during evening is also 2/3.
Since the two events are independent i.e. his choice during morning is not affecting his choice during the evening, the probability that he does not teleports during the day will be the product of both individual probabilities.
So, the probability that Marvin does not teleport during the day = 
Probability that Marvin teleports atleast once during the day = 1 - Probability that Marvin does not teleport during the day.
Probability that Marvin teleports atleast once during the day = 
<span>A shareholder must own 600,001 shares to have majority.
</span><span>
</span>
Since the photo booth charges a $500 fee for two hours at the party and an additional 50 dollars per hour, we have:
50x+500=C
Where x is the hours stayed and C is the total cost. Since Cindy doesn't want to spend more than 700 dollars, we have:

So she spent an additional 4 hours on the rental.
Answer:
0.1469
Step-by-step explanation:
Given from the question;
Mean=8.4 hrs=μ
Standard deviation=1.8 hrs=δ
Sample size, n=40
Let x=8.7
z=(x-μ)÷(δ÷√n)
Find z(8.7)
z=(8.7-8.4)÷(1.8÷√40)
z={0.3×√40}÷1.8=1.05409
z=1.0541
Read from the standard normal probabilities table
P(z>1.0541)
=0.1459
Answer:
PQ = 5 units
QR = 8 units
Step-by-step explanation:
Given
P(-3, 3)
Q(2, 3)
R(2, -5)
To determine
The length of the segment PQ
The length of the segment QR
Determining the length of the segment PQ
From the figure, it is clear that P(-3, 3) and Q(2, 3) lies on a horizontal line. So, all we need is to count the horizontal units between them to determine the length of the segments P and Q.
so
P(-3, 3), Q(2, 3)
PQ = 2 - (-3)
PQ = 2+3
PQ = 5 units
Therefore, the length of the segment PQ = 5 units
Determining the length of the segment QR
Q(2, 3), R(2, -5)
(x₁, y₁) = (2, 3)
(x₂, y₂) = (2, -5)
The length between the segment QR is:




Apply radical rule: ![\sqrt[n]{a^n}=a,\:\quad \mathrm{\:assuming\:}a\ge 0](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Ba%5En%7D%3Da%2C%5C%3A%5Cquad%20%5Cmathrm%7B%5C%3Aassuming%5C%3A%7Da%5Cge%200)

Therefore, the length between the segment QR is: 8 units
Summary:
PQ = 5 units
QR = 8 units