Answer:
Suppose the bowl is situated such that the rim of the bowl touches the x axis, and the semicircular cross section of the bowl lies below the x-axis (in (iii) and (iv) quadrant ). Then the equation of the cross section of the bowl would be
, where y≤ 0,
⇒ 
Here, h represents the depth of water,
Thus, by using shell method,
The volume of the disk would be,



![=\pi [ (144(-12+h)-\frac{(-12+h)^3}{3}-144(-12)+\frac{(-12)^3}{3}}]](https://tex.z-dn.net/?f=%3D%5Cpi%20%5B%20%28144%28-12%2Bh%29-%5Cfrac%7B%28-12%2Bh%29%5E3%7D%7B3%7D-144%28-12%29%2B%5Cfrac%7B%28-12%29%5E3%7D%7B3%7D%7D%5D)
![=\pi [ -1728 + 144h - \frac{1}{3}(-1728+h^3+432h-36h^2)+1728-\frac{1728}{3}]](https://tex.z-dn.net/?f=%3D%5Cpi%20%5B%20-1728%20%2B%20144h%20-%20%5Cfrac%7B1%7D%7B3%7D%28-1728%2Bh%5E3%2B432h-36h%5E2%29%2B1728-%5Cfrac%7B1728%7D%7B3%7D%5D)
![=\pi [ 144h - \frac{1}{3}(h^3+432h-36h^2}{3}]](https://tex.z-dn.net/?f=%3D%5Cpi%20%5B%20144h%20-%20%5Cfrac%7B1%7D%7B3%7D%28h%5E3%2B432h-36h%5E2%7D%7B3%7D%5D)
![=\pi [ 144h - \frac{h^3}{3} - 144h + 12h^2]](https://tex.z-dn.net/?f=%3D%5Cpi%20%5B%20144h%20-%20%5Cfrac%7Bh%5E3%7D%7B3%7D%20-%20144h%20%2B%2012h%5E2%5D)

Special cases :
If h = 0,

If h = 12,
