Complete question :
Suppose someone gives you 8 to 2 odds that you cannot roll two even numbers with the roll of two fair dice. This means you win $8 if you succeed and you lose $2 if you fail. What is the expected value of this game to you? What can you expect if you play 100 times.
Answer:
$0.5 ; win $50 with 100 rolls
Step-by-step explanation:
From a roll of two fair dice; probability of obtaining an even number :
Even numbers = (2, 4, 6) = 3
P = 3 /6 = 1 /2
For 2 fair dice ; probability of rolling two even numbers : independent event.
1/2 * 1/2 = 1/4
Hence, p(success) = 1/4 ; P(failure) = 1 - 1/4 = 3/4
Probability table
Winning = $8 or loss = - $2
X : ____ 8 ______ - 2
P(x) __ 1/4 ______ 3/4
Expected value : E(x) = ΣX*P(x)
E(x) = (8 * 1/4) + (-2 * 3/4)
E(x) = 2 - 1.5
E(x) = $0.5
Since expected value is positive, the expect to win
If played 100 times;
Expected value = 100 * $0.5 = $50
Answer:
520 Students
Step-by-step explanation:
800 x 0.65 = 520
520 students ride the bus
The one you picked, on the bottom left is correct
The top two both have rectangles and triangles, making them most likely triangular prisms. To the bottom right, the net represents a cube, which is incorrect, because the figure is supposed to be a rectangular prism.
(1/2)/2=3/x
we can cross multiply, aka multiply both sides by 2x
(1/2)x=2*3
(1/2)x=6
times 2/1 both sides
x=12