Answer:
Transcription and translation occur simultaneously in prokaryotes.
Explanation:
Prokaryotes lack membrane-bound organelles and therefore, do not have a nucleus. Transcription and translation occur in the cytoplasm. As soon as the required length of mRNA is being formed, ribosomes join it and start the process of translation. Prokaryotic genes lack introns. The primary transcript formed by transcription in prokaryotes does not undergo splicing.
On the other hand, the process of transcription occurs in the nucleus in eukaryotes while translation occurs in the cytoplasm. The primary transcript formed by transcription in eukaryotes undergoes modifications to remove introns and to add a poly-A tail and 5' cap. Post-transcriptional modifications and spatial separation of two processes in eukaryotes result in slower translation than prokaryotes.
Mitosis produces cells that are genetically identical to the parent cell.
Meiosis includes two distinct processes that contribute to the generation of
genetic variation: crossing over shuffles alleles on the same chromosome
into new combinations, whereas the random distribution of maternal and
paternal chromosomes shuffles alleles on different chromosomes into new
<span>combinations.</span>
Answer:
FALSE
Explanation:
But carbon-14 dating won't work on dinosaur bones. The half-life of carbon-14 is only 5,730 years, so carbon-14 dating is only effective on samples that are less than 50,000 years old. Dinosaur bones, on the other hand, are millions of years old -- some fossils are billions of years old. To determine the ages of these specimens, scientists need an isotope with a very long half-life. Some of the isotopes used for this purpose are uranium-238, uranium-235 and potassium-40, each of which has a half-life of more than a million years.
True. When a single ADP molecule receives 1 phosphate group it will become a molecule of ATP.