The length of one side, s, of a shipping box is s(x) = ^3√2x, where x is the volume of the box in cubic inches. A manufacturer n
eeds the volume of the box to be between 108 in.3 and 256 in.3. What are the minimum and maximum possible lengths of s?
1 answer:
Answer:
Minimum value: 6 inches,
Maximum value: 8 inches.
Step-by-step explanation:
To find the minimum length of s, we need to use the minimum volume of the shipping box in the equation, so:
s_minimum = ^3√(2*108) = ^3√216 = 6 inches
The maximum value of the volume will give us the maximum value of the length:
s_maximum = ^3√(2*256) = ^3√512 = 8 inches
So the minimum value of the length is 6 inches and the maximum value is 8 inches.
You might be interested in
Answer:
B is your answeer
Step-by-step explanation:
GL hope i helped<333!!
(x+7, y-3)
To move from the theater to Sam you would move right 7 units and down 3 units.
Answer:
Im pretty sure ur answers would be
x= -32/27 and X= -46/27
Step-by-step explanation:
So srry if im wrong tho
Answer:
Ur mom lol she gave birth to a kid who knows nothin
Step-by-step explanation:
Answer:
Percentage left of the milk: 22.22%