Answer:
5·7
Step-by-step explanation:
From your knowledge of multiplication tables, you know that ...
5×7 = 35
Both 5 and 7 are prime numbers, so that is the prime factorization.
The first example has students building upon the previous lesson by applying the scale factor to find missing dimensions. This leads into a discussion of whether this method is the most efficient and whether they could find another approach that would be simpler, as demonstrated in Example 2. Guide students to record responses and additional work in their student materials.
§ How can we use the scale factor to write an equation relating the scale drawing lengths to the actual lengths?
!
ú Thescalefactoristheconstantofproportionality,ortheintheequation=or=!oreven=
MP.2 ! whereistheactuallength,isthescaledrawinglength,andisthevalueoftheratioofthe drawing length to the corresponding actual length.
§ How can we use the scale factor to determine the actual measurements?
ú Divideeachdrawinglength,,bythescalefactor,,tofindtheactualmeasurement,x.Thisis
! illustrated by the equation = !.
§ How can we reconsider finding an actual length without dividing?
ú We can let the scale drawing be the first image and the actual picture be the second image. We can calculate the scale factor that relates the given scale drawing length, , to the actual length,. If the actual picture is an enlargement from the scale drawing, then the scale factor is greater than one or
> 1. If the actual picture is a reduction from the scale drawing, then the scale factor is less than one or < 1.
Scaffolding:
A reduction has a scale factor less than 1, and an enlargement has a scale factor greater than 1.
Lesson 18: Computing Actual Lengths from a Scale Drawing.
The answer is: [C]: -0.7, ⅕, 0.35, ⅔ .
________________________________________
Explanation:
_________________________________________
<span>
Note that in this correct Answer choice "C" given, we have the following arrangement of numbers:
_____________________________________________________
</span>→ -0.7, ⅕, 0.35, ⅔ ;
______________________________________
We are asked to find the "Answer choice" (or, perhaps, "Answer choices?") given that show a set of numbers arranged in order from "least to greatest"; that is, starting with a value that is the smallest number in the arrangement, and sequentially progressing, in order from least to greatest, with the largest (greatest) number in the arrangement appearing as the last number in the arrangement.
______________________
Note the EACH of the 4 (four) answer choices given consists of an arrangement with ONLY one negative number, "- 0.7". Only TWO of the answer choices—Choices "B" and "C"—have an arrangement beginning with the number, "-0.7 "; So we can "rule out" the "Answer choices: [A] and [D]".
________________________
Let us examine: Answer choice: [B]: <span>-0.7, 0.35, ⅕, ⅔ ;
</span>_________________________
Note: The fraction, "⅕" = "2/10"; or, write as: 0.2 .
________________________________________
The fraction, "⅔" = 0.6666667 (that is 0.6666... repeating; so we often see a "final decimal point" rounded to "7" at some point.
___________________________________________
Through experience, one will be able to automatically look at these 2 (two) fractions and immediately know their "decimal equivalents".
____________________________________________
Otherwise, one can determine the "decimal form" of these values on a calculator by division:
_________________________
→ ⅕ = 1/5 = 1 ÷ 5 = 0.2
_________________________
→ ⅔ = 2/3 = 2 ÷ 3 = 0.6666666666666667
___________________________________
For Answer choice: [B], we have:
______________________________
→ -0.7, 0.35, ⅕, ⅔ ;
_________________________
→ So, we can "rewrite" the arrangement of "Answer choice [B]" as:
___________________________________________
→ -0.7, 0.35, 0.2, 0.666666667 ;
________________________________
→ And we can see that "Answer choice: [B]" is INCORRECT; because
"0.2" (that is, "⅕"), is LESS THAN "0.35". So, "0.35" should not come BEFORE "⅕" in the arrangement that applies correctly to the problem.
_______________________________________
Let us examine: Answer choice: [C]: -0.7, ⅕, 0.35, 0.666666667 .
____________________________________________
→ Remember from our previous— and aforementioned—examination of "Answer Choice: [B]" ; that:
____________________________
→ ⅕ = 0.2 ; and:
→ ⅔ = 0.666666667
_______________________
So, given:
____________
→ Answer choice: [C]: -0.7, ⅕, 0.35, ⅔ ;
______________________
→ We can "rewrite" this given "arrangement", substituting our known "decimal values for the fractions:
______________________________
→ Answer choice: [C]: -0.7, 0.2, 0.35, 0.666666667 ;
_________________________________________
→ As mentioned above, this sequence starts with "-0.7", which is the ONLY negative number in the sequence; as such, the next positive number is correct. Nonetheless, "0.2" (or, "(⅕") is the next number in the sequence, and is greater than "-0.7". The next number is "0.35. "0.35" is greater than "⅕" (or, "0.2"). Then next number is "(⅔)" (or, "0.666666667").
"(⅔)"; (or, "0.666666667") is greater than 0.35.
____________________________
This set of numbers: "-0.7, ⅕, 0.35, ⅔" ; is arranged in order from least to greatest; which is "Answer choice: [C]: -0.7, ⅕, 0.35, ⅔" ; the correct answer.
________________________________________________________