First, we have to find the length of each side of triangle. Equilateral triangle means 3 sides r in same length, so each side will be 21 ÷ 3 = 7
Now we need to calculate the height of the triangle. We can do this by Pythagoras theorem
Let the height be h
(7/2)^2 + x^2 = 7^2
The area should be 6.0621778265
Or u can say 6.06 corrected to 3 sig fig
Soooooo sorry but I only understood part a and c.
sorry
"14,494 rounded to the nearest ten-thousands" would be 10,000.
Because the value of the digit before the ten thousands place (4) is less than the value of 5, the digit in the ten-thousands position does not change.
<h3>
ax² + bx + c = 0</h3>
<em>Let's write -9 where we see A</em><em>:</em>
<h3>
-9x² + bx + c = 0</h3>
<em>Let's</em><em> </em><em>write</em><em> </em><em>0</em><em> </em><em>where</em><em> </em><em>we</em><em> </em><em>see</em><em> </em><em>B</em><em>:</em>
<h3>
-9x² + 0.x + c = 0</h3>
<em>(</em><em>Since B = 0, when it is multiplied by x, it becomes 0 again</em><em>)</em>
<h3>
-9x² + c = 0</h3>
<em>Let's</em><em> </em><em>write</em><em> </em><em>-2</em><em> </em><em>where</em><em> </em><em>we</em><em> </em><em>see</em><em> </em><em>C</em><em>:</em>
<h3>
-9x² + -2 = 0</h3>
<em>Now we can move on to solving our equation</em><em>:</em><em>)</em>
<em>Let's put the known and the unknown on different sides:</em>
<em>(</em><em>-2 goes to the opposite side positively</em><em>)</em>
<h3>
-9x² = 2</h3>
<em>(</em><em>i</em><em>t goes as a division because it is in the case of multiplying -9 across</em><em>)</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em>
<h3>
x² = 2/-9</h3>
<em>I could not find the rest of it, but I did not want to delete it for trying very hard. Sorry. It felt like we should take the square root, but I couldn't find it, maybe this can help you a little bit.</em>
<em>Please do not report</em><em>:</em><em>(</em>
<em>I hope I got it right, I'm trying to improve my English a little :)</em>
<h3>
<em>Greetings from Turke</em><em>y</em><em>:</em><em>)</em></h3>
<h3>
<em><u>#XBadeX</u></em></h3>