<span>
Plants and animals are multi-cellular organisms composed of eukaryotic cells, while bacteria are single-cell prokaryotic organisms. Each eukaryotic cell of a plant or animal includes a central nucleus containing DNA and membrane-bound organelles, such as endoplasmic reticulum and mitochondria. A bacterial cell has no nucleus or membrane-bound organelles.
hope it helps! :)
</span>
Answer:
182.70K
Explanation:
Using the general gas equation as follows:
PV = nRT
Where;
P = pressure (atm)
V = volume (L)
n = number of moles (mol)
R = 0.0821 Latm/Kmol
T = temperature (K)
Based on the provided information, P = 5 atm, V = 12L, n = 4 moles, T =?
PV = nRT
5 × 12 = 4 × 0.0821 × T
60 = 0.3284T
T = 60/0.3284
T = 182.70K
Some of the symptoms from swallowing hydrochloric acid:
<span><span>
</span></span><span><span>-Abdominal pain
</span>-Breathing difficulty due to swelling of throat
-Chest pain
-Drooling
-Fever
-Mouth pain
-Rapid drop in blood pressure
-Throat pain <span>
-Vomiting blood</span></span>
<span>The slim exit of the
column is first persisted with glass wool or a permeable plate in order to sustain
the column packing element and keep it from getting out of the tube. Then the
adsorbent solid, which is usually a silica, is firmly packed into the glass
tube to make the separating column. The packing of the non-moving phase into
the glass column must be done with precaution to create an even distribution of
material. An even distribution of adsorbent material is very important to lessen
the existence of air bubbles and/or channels inside the column. To finish
preparing the column, the solvent to be used as the mobile phase is delivered
through the dry column. Then the column is said to be "wetted" and
the column must stay wet throughout the entire procedure. Once the column is properly
prepared, the sample to be separated is placed at the top of the wet column.</span>
Answer:
Explanation:
From the given information:
We are to make use of the spinach absorbance extract which is the corrected absorbance (y) = 0.306
And also the trendline equation:
y = 1609x + 0.0055
where,
x = absorbance of the spinach extract.
∴
0.306 = 1609x + 0.0055
collecting the like terms
0.306 - 0.0055 = 1609x
0.3005 = 1609x
x = 0.3005/1609
x = 1.8676 × 10⁻⁴
x ≅ 0.0002 M
No. of grams for the chlorophyll can be computed as follows:
recall that:
molar mass of chlorophyll = 893.5 g/mol
the volume = 25ml = (25/1000) L = 0.025 L
∴
In spinach solution, the no. of grams for the chlorophyll:
= (0.0002) mol/L × (893.5 g/mol) × (0.025) L
= 0.0044675 g
≅ 0.0045 g
In the spinach, the concentration of chlorophyll = no of grams of chlorophyll/ mass of the spinach
= 4.5 mg/0.1876 g
= 23.987 mg/g
≅ 24 mg/g