Answer: Option (c) is the correct answer.
Explanation:
When a system is open then there will be exchange of energy between the system and surrounding.
Whereas when a system is closed then there will be no exchange of energy, that is, thermal energy will not flow into the atmosphere.
Thus, we can conclude that a sealed calorimeter is a closed system because thermal energy is not transferred to the environment.
The amount of energy released when 0.06 kg of mercury condenses at the same temperature can be calculated using its latent heat of fusion which is the opposite of melting. Latent heat of fusion and melting can be used because they have the same magnitude, but opposite signs. Latent heat is the amount of energy required to change the state or phase of a substance. For latent heat, there is no temperature change. The equation is:
E = m(ΔH)
where:
m = mass of substance
ΔH = latent heat of fusion or melting
According to data, the ΔH of mercury is approximately 11.6 kJ/kg.
E = 0.06kg (11.6 kJ/kg) = 0.696 kJ or 696 J
The answer is D. 697.08 J. Note that small differences could be due to rounding off or different data sources.
Answer:
66 grams
Explanation:
For every 1 gram of NH4NO3 equals 2 grams of water
The question is partially incorrect, because nitration of <span> methyl benzoate results in generation of methyl 3-nitrobenzoate, and not methyl 2-benzoate.
This a because of the present of ester group, which deactivated benzene ring at ortho and para position. Due to this, the electrophile (NO2+) attackes on meta position.
The detailed mechanism is attached below.</span>
Sodium metal forms at the cathode