Answer:
80mL
Explanation:
Step 1:
Data obtained from the question.
Initial Volume (V1) = 40mL
Initial temperature (T1) = –123°C
Final temperature (T2) = 27°C
Final volume (V2) =..?
Step 2:
Conversion of celsius temperature to Kelvin temperature.
T(K) = T(°C) + 273
Initial temperature (T1) = –123°C =
–123°C + 273 = 150K
Final temperature (T2) = 27°C = 27°C + 273 = 300K
Step 3:
Determination of the final volume.
This can be obtained as follow:
V1/T1 = V2/T2
Initial Volume (V1) = 40mL
Initial temperature (T1) = 150K
Final temperature (T2) = 300
Final volume (V2) =..?
V1/T1 = V2 /T2
40/150 = V2 /300
Cross multiply
150 x V2 = 40 x 300
Divide both side by 150
V2 = (40 x 300) /150
V2 = 80mL
Therefore, the new volume of the gas is 80mL
Answer:
distance between them , and mass of the objects
Explanation:
the further away a object is the weaker the gyrational pull is, and imagine lifting a anvil above your head, the anvil weight push's down upon you pulling.
The correct answer B. increase the flame setting to produce more heat
Answer:
In order to calculate the moles of a product, you must know the mass of the product, and its molar mass (g/mol), which is the mass of one mole of of the product. You then divide the mass of the product by its molar mass.