M=15...................................................................
N is greater than or equal to 5
So that is the first one.
Hope that help you.
Answer:

Step-by-step explanation:
I will work with radians.
![$\frac {\cos^2 \left(\frac{\pi}{2}-x \right)+\sin(-x)-\sin^2 \left(\frac{\pi}{2}-x \right)+\cos \left(\frac{\pi}{2}-x \right)} {[\sin(\pi -x)+\cos(-x)] \cdot [\sin(2\pi +x)\cos(2\pi-x)]}$](https://tex.z-dn.net/?f=%24%5Cfrac%20%7B%5Ccos%5E2%20%5Cleft%28%5Cfrac%7B%5Cpi%7D%7B2%7D-x%20%5Cright%29%2B%5Csin%28-x%29-%5Csin%5E2%20%5Cleft%28%5Cfrac%7B%5Cpi%7D%7B2%7D-x%20%5Cright%29%2B%5Ccos%20%5Cleft%28%5Cfrac%7B%5Cpi%7D%7B2%7D-x%20%5Cright%29%7D%20%7B%5B%5Csin%28%5Cpi%20-x%29%2B%5Ccos%28-x%29%5D%20%5Ccdot%20%5B%5Csin%282%5Cpi%20%2Bx%29%5Ccos%282%5Cpi-x%29%5D%7D%24)
First, I will deal with the numerator

Consider the following trigonometric identities:




Therefore, the numerator will be

Once



Now let's deal with the numerator
![[\sin(\pi -x)+\cos(-x)] \cdot [\sin(2\pi +x)\cos(2\pi-x)]](https://tex.z-dn.net/?f=%5B%5Csin%28%5Cpi%20-x%29%2B%5Ccos%28-x%29%5D%20%5Ccdot%20%5B%5Csin%282%5Cpi%20%2Bx%29%5Ccos%282%5Cpi-x%29%5D)
Using the sum and difference identities:





Therefore,
![[\sin(\pi -x)+\cos(-x)] \cdot [\sin(2\pi +x)\cos(2\pi-x)] \implies [\sin(x)+\cos(x)] \cdot [\sin(x)\cos(x)]](https://tex.z-dn.net/?f=%5B%5Csin%28%5Cpi%20-x%29%2B%5Ccos%28-x%29%5D%20%5Ccdot%20%5B%5Csin%282%5Cpi%20%2Bx%29%5Ccos%282%5Cpi-x%29%5D%20%5Cimplies%20%5B%5Csin%28x%29%2B%5Ccos%28x%29%5D%20%5Ccdot%20%5B%5Csin%28x%29%5Ccos%28x%29%5D)
![\implies [p+4] \cdot [p \cdot 4]=4p^2+16p](https://tex.z-dn.net/?f=%5Cimplies%20%5Bp%2B4%5D%20%5Ccdot%20%5Bp%20%5Ccdot%204%5D%3D4p%5E2%2B16p)
The final expression will be

The answer is (I think) 112
I'm not sure if people can answer your question with the lack of information. If you would add information and I would be happy to help.