By definition of tangent,
tan(2<em>θ</em>) = sin(2<em>θ</em>) / cos(2<em>θ</em>)
Recall the double angle identities:
sin(2<em>θ</em>) = 2 sin(<em>θ</em>) cos(<em>θ</em>)
cos(2<em>θ</em>) = cos²(<em>θ</em>) - sin²(<em>θ</em>) = 2 cos²(<em>θ</em>) - 1
where the latter equality follows from the Pythagorean identity, cos²(<em>θ</em>) + sin²(<em>θ</em>) = 1. From this identity we can solve for the unknown value of sin(<em>θ</em>):
sin(<em>θ</em>) = ± √(1 - cos²(<em>θ</em>))
and the sign of sin(<em>θ</em>) is determined by the quadrant in which the angle terminates.
<em />
We're given that <em>θ</em> belongs to the third quadrant, for which both sin(<em>θ</em>) and cos(<em>θ</em>) are negative. So if cos(<em>θ</em>) = -4/5, we get
sin(<em>θ</em>) = - √(1 - (-4/5)²) = -3/5
Then
tan(2<em>θ</em>) = sin(2<em>θ</em>) / cos(2<em>θ</em>)
tan(2<em>θ</em>) = (2 sin(<em>θ</em>) cos(<em>θ</em>)) / (2 cos²(<em>θ</em>) - 1)
tan(2<em>θ</em>) = (2 (-3/5) (-4/5)) / (2 (-4/5)² - 1)
tan(2<em>θ</em>) = 24/7
The answer is j.
y = |x - 1|
Answer:
Step-by-step explanation:
Let x be the random variable. Since it is normally distributed and the population mean and population standard deviation are known, we would apply the formula,
z = (x - µ)/σ
Where
x = sample mean
µ = population mean
σ = standard deviation
From the information given,
µ = 474
σ = 32
x = 514
The probability of being below 514 is expressed as P(x < 514)
For x = 514,
z = (514 - 474)/32 = 1.25
Looking at the normal distribution table, the probability value corresponding to area below the z score is 0.89
Therefore,
P(x < 514) = 0.89
You need to look at the x values when you calculate that.
There is a line which goes from -2 to 0. Another line at 0 to 4 and the last line is 7 to infinity.
You can combine the first two and get B) (-2, 4] and [7, infinity)
Answer:
0
Step-by-step explanation:
- 0 correct
- 2 incorrect
- 4 incorrect
- 8 incorrect