We define acceleration as the rate of change of the velocity
Thus, if you have positive velocity and positive acceleration, your <u>speed increases.</u>
If you have positive velocity and negative acceleration, your speed decreases.
Now you get the idea, we will see that the correct option is graph 1.
We know that the car moves towards the right (let's define this as "the car has positive velocity") and we also know that te car is slowing down constantly (thus the acceleration needs to be negative and constant).
By looking at the graphs, the only one with these properties is graph 1.
If you want to learn more, you can read:
brainly.com/question/12550364
Answer:


Explanation:
<u><em>Finding the net force:</em></u>
<u><em>Firstly , we'll find force of Friction:</em></u>

Where
is the coefficient of friction and m = 13.6 kg


<u><em>Now, Finding the net force:</em></u>


<u><em>Finding Acceleration:</em></u>



Understanding the given:
85 kg mountain climber
6.50 m long rope
gravity = 10m/s2
If we want to identify the work done on this scenario
we get f = 85kg x 10m/s2 = 850 N
w = 850N x 6.5 m = 5525 J
Thank you for your question. Please don't hesitate to ask in Brainly your queries.
Answer:
V = 156.13 [cm³]
Explanation:
El volumen de un solido con forma de paralepipedo se puede calcular por medio de la siguiente formula:

donde:
V = volumen [cm³]
ancho = 3.4 [cm]
largo = 11.2 [cm]
alto = 4.1 [cm]
Ahora reemplazando.
![V = 3.4*11.2*4.1\\V = 156.13 [cm^{3}]](https://tex.z-dn.net/?f=V%20%3D%203.4%2A11.2%2A4.1%5C%5CV%20%3D%20156.13%20%5Bcm%5E%7B3%7D%5D)
Answer:
A) 60%
B) p2 = 1237.2 kPa
v2 = 0.348 m^3
C) w1-2 = w3-4 = 1615.5 kJ
Q2-3 = 60 kJ
Explanation:
A) calculate thermal efficiency
Л = 1 -
where Tl = 300 k
Th = 750 k
hence thermal efficiency ( Л ) = [1 - ( 300 / 750 )] * 100 = 60%
B) calculate the pressure and volume at the beginning of the isothermal expansion
calculate pressure ( P2 ) :
= P3v3 = mRT3 ----- (1)
v3 = 0.4m , mR = 2* 0.287, T3 = 750
hence P3 = 1076.25
next equation to determine P2
Qex = p3v3 ln( p2/p3 )
60 = 1076.25 * 0.4 ln(p2/p3)
hence ; P2 = 1237.2 kpa
calculate volume ( V2 )
p2v2 = p3v3
v2 = p3v3 / p2
= (1076.25 * 0.4 ) / 1237.2
= 0.348 m^3
C) calculate the work and heat transfer for each four processes
work :
W1-2 = mCv( T2 - T1 )
= 2*0.718 ( 750 - 300 ) = 1615.5 kJ
W3-4 = 1615.5 kJ
heat transfer
Q2-3 = W2-3 = 60KJ
Q3-4 = 0
D ) sketch of the cycle on p-V coordinates
attached below