1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ray Of Light [21]
3 years ago
14

Discuss the relationship between amperage, voltage, and power.

Physics
1 answer:
Stells [14]3 years ago
5 0

Electrical power, in watts  =  (voltage, in volts) x (current, in Amperes)
You might be interested in
A small sphere of reference-grade iron with a specific heat of 447 J/kg K and a mass of 0.515 kg is suddenly immersed in a water
elena-14-01-66 [18.8K]

Answer:

The specific heat of the unknown material is 131.750 joules per kilogram-degree Celsius.

Explanation:

Let suppose that sphere is cooled down at steady state, then we can estimate the rate of heat transfer (\dot Q), measured in watts, that is, joules per second, by the following formula:

\dot Q = m\cdot c\cdot \frac{T_{f}-T_{o}}{\Delta t} (1)

Where:

m - Mass of the sphere, measured in kilograms.

c - Specific heat of the material, measured in joules per kilogram-degree Celsius.

T_{o}, T_{f} - Initial and final temperatures of the sphere, measured in degrees Celsius.

\Delta t - Time, measured in seconds.

In addition, we assume that both spheres experiment the same heat transfer rate, then we have the following identity:

\frac{m_{I}\cdot c_{I}}{\Delta t_{I}} = \frac{m_{X}\cdot c_{X}}{\Delta t_{X}} (2)

Where:

m_{I}, m_{X} - Masses of the iron and unknown spheres, measured in kilograms.

\Delta t_{I}, \Delta t_{X} - Times of the iron and unknown spheres, measured in seconds.

c_{I}, c_{X} - Specific heats of the iron and unknown materials, measured in joules per kilogram-degree Celsius.

c_{X} = \left(\frac{\Delta t_{X}}{\Delta t_{I}}\right)\cdot \left(\frac{m_{I}}{m_{X}} \right) \cdot c_{I}

If we know that \Delta t_{I} = 6.35\,s, \Delta t_{X} = 4.59\,s, m_{I} = 0.515\,kg, m_{X} = 1.263\,kg and c_{I} = 447\,\frac{J}{kg\cdot ^{\circ}C}, then the specific heat of the unknown material is:

c_{X} = \left(\frac{4.59\,s}{6.35\,s} \right)\cdot \left(\frac{0.515\,kg}{1.263\,kg} \right)\cdot \left(447\,\frac{J}{kg\cdot ^{\circ}C} \right)

c_{X} = 131.750\,\frac{J}{kg\cdot ^{\circ}C}

Then, the specific heat of the unknown material is 131.750 joules per kilogram-degree Celsius.

3 0
3 years ago
How much work is required to pull a wagon 6 meters if you use 70 N of force?
yKpoI14uk [10]

Answer:

..

Explanation:

7 0
4 years ago
100%
xxMikexx [17]

Answer:

1. The elastic potential energy is 0.0176 Joules

2. The kinetic energy of the pinball the instant it leaves the spring is 0.0176 Joules

3. The speed of the pinball the instant it leaves the spring is approximately 2.42212 m/s

4. The height of the part where the pinball is located on the machine above the ground is approximately 0.213 meters

Explanation:

The spring constant of the pinball machine's plunger, k = 22 N/m

The amount by which the pinball machine's plunger is compressed, x = 0.04 m

The mass of the pinball ball, m = 0.006 kg

1. The elastic potential energy, P.E. = 1/2·k·x²

By substitution, we get;

P.E. = 1/2 × 22 N/m × (0.04 m)² = 0.0176 J

The elastic potential energy, P.E. = 0.0176 J

2. At the instant the pinball leaves the spring, the plunger and therefore the force of the plunger no longer acts on the pinball

Since there are no external forces acting on the pinball to increase the speed of the pinball after it leaves the spring, the velocity reached is its maximum velocity, and therefore, the kinetic energy, K.E. is the maximum kinetic energy which by the conservation of energy, is equal to the initial potential energy

Therefore;

K.E. = P.E. = 0.0176 J

The kinetic energy of the pinball the instant it leaves the spring, K.E.= 0.0176 J

3. The kinetic energy, K.E., is given by the following formula;

K.E. = 1/2·m·v²

Where;

v = The speed or velocity of the object having kinetic energy K.E.

Therefore, from K.E. = 0.0176 J, and by plugging in the values of the variables, we have;

K.E. = 0.0176 J = 1/2 × 0.006 kg × v²

v² = 0.0176 J/(1/2 × 0.006 kg) = 88/15 m²/s²

v = √(88/15 m²/s²) ≈ (2·√330)/15 m/s ≈ 2.42212 m/s

The speed of the pinball the instant it leaves the spring, v ≈ 2.42212 m/s

4. The height of the pinball is given by the following kinematic equation of motion;

v_h² = u² - 2·g·h

Where;

v_h = The velocity of the pinball at the given height = 1.3 m/s

u = v ≈ 2.42212 m/s (The initial velocity of the pinball as it the spring)

g = The acceleration due to gravity ≈ 9.8 m/s²

h = The height of the pinball above the ground

We get;

v_h² = 1.3² = 2.42212² - 2 × 9.8 × h

∴  h = (2.42212² - 1.3²)/(2 × 9.8) ≈ 0.213

The height of the part where the pinball is located on the machine above the ground, h ≈ 0.213 m

5 0
3 years ago
25. Describe how the atomic mass unit (amu) was derived and how the mass of the electron relates to the
Gwar [14]

Answer:

ok

Explanation:

7 0
4 years ago
Read 2 more answers
A diverging lens has a focal length of -30.0 cm. An object is placed 18.0 cm in front of this lens.
yulyashka [42]

Answer:

A) Calculate the distance

8 0
4 years ago
Other questions:
  • If you are an astronaut in the middle of the near side of the moon during a full moon,how would the ground around you look?How w
    10·2 answers
  • Which of the following statements is a true statement about the use of nuclear energy as an alternative energy source?
    10·1 answer
  • A student wants to demonstrate entropy using the songs on her portable music player. What should she do to demonstrate the lowes
    6·1 answer
  • If 20 joules of work is used to transfer 20 coulombs of charge through a 20 ohm resistor, the potential difference across the re
    9·2 answers
  • A 50-loop circular coil has a radius of 3 cm. It is oriented so that the field lines of a magnetic field are perpendicular to th
    10·1 answer
  • Heat engines convert which type of energy into mechanical work
    6·1 answer
  • Conservation of Momentum Practice
    11·1 answer
  • A car travels 40 miles north in 30 minutes and then turns around and travels 20 miles south in 30 minutes. The distance travelle
    14·1 answer
  • A rectangular loop with dimensions 4.20 cm by 9.50 cm carries current I. The current in the loop produces a magnetic field at th
    7·1 answer
  • Brandonyaelcamposbarrios Hsjd
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!