Answer:
yes it is correct
Step-by-step explanation:
9514 1404 393
Answer:
- non-leap years: 31/365
- leap years: 31/366
Step-by-step explanation:
As a fraction of the number of days in a calendar year, it will depend on whether the year is a leap year.
non-leap years have 365 days, so 31 days is 31/365 years.
leap years have 366 days, so 31 days is 31/366 years.
_____
If you're asking for the purpose of computing interest, you need to be aware that "ordinary interest" counts 360 days in a year. 31 days would be 31/360 years. "Exact interest" counts 365 days in a year, so 31 days would be 31/365 years.
In astronomy, the definitions of "day" and "year" may vary, depending on the frame of reference and what direction in space marks the boundary of the period. The precise fraction will depend on how you define these terms and where the clock is located.
Answer:
-4/7, -1/19, 7/4
Step-by-step explanation:
The fractions converted into decimals would be -0.05, 1.75, -0.57
Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
<u>Calculus</u>
Implicit Differentiation
The derivative of a constant is equal to 0
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Product Rule: ![\frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bf%28x%29g%28x%29%5D%3Df%27%28x%29g%28x%29%20%2B%20g%27%28x%29f%28x%29)
Chain Rule: ![\frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Quotient Rule: ![\frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%20%5B%5Cfrac%7Bf%28x%29%7D%7Bg%28x%29%7D%20%5D%3D%5Cfrac%7Bg%28x%29f%27%28x%29-g%27%28x%29f%28x%29%7D%7Bg%5E2%28x%29%7D)
Step-by-step explanation:
<u>Step 1: Define</u>
-y - 2x³ = y²
Rate of change of tangent line at point (-1, -2)
<u>Step 2: Differentiate Pt. 1</u>
<em>Find 1st Derivative</em>
- Implicit Differentiation [Basic Power Rule]:

- [Algebra] Isolate <em>y'</em> terms:

- [Algebra] Factor <em>y'</em>:

- [Algebra] Isolate <em>y'</em>:

- [Algebra] Rewrite:

<u>Step 3: Differentiate Pt. 2</u>
<em>Find 2nd Derivative</em>
- Differentiate [Quotient Rule/Basic Power Rule]:

- [Derivative] Simplify:

- [Derivative] Back-Substitute <em>y'</em>:

- [Derivative] Simplify:

<u>Step 4: Find Slope at Given Point</u>
- [Algebra] Substitute in <em>x</em> and <em>y</em>:

- [Pre-Algebra] Exponents:

- [Pre-Algebra] Multiply:

- [Pre-Algebra] Add:

- [Pre-Algebra] Exponents:

- [Pre-Algebra] Divide:

- [Pre-Algebra] Add:

- [Pre-Algebra] Simplify:

Answer:
A.
Step-by-step explanation: