1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
drek231 [11]
3 years ago
10

In little Marsden the population is 17 222. The men and women together total 9142 and the women and children together total 13 2

01.
There are ...... Women
There are ...... Men
There are ...... Children
Mathematics
2 answers:
stich3 [128]3 years ago
8 0
A = Children
b = men
c = women

a + b + c = 17 222
b + c = 9142
a + c = 13 201

To find a we will minus b + c from 17 222.
a + b + c = 17 222
a + (9142) = 17 222
a + 9142 (- 9142) = 17 222 (- 9142)
<u>a = 8080
</u>
To find c we will take the equation " a + c = 13 201 " and substitute a to "<u>a = 8080"
</u>a + c = 13 201 
(8080) + c = 13 201
8080 (-8080) + c = 13 201 (-8080)
<u>c = 5121</u>

And then to find b we will take the equation " a + b + c= 17 222 " and substitute 'a' and 'c' for their solved numbers.
a + b + c = 17 222
(8080) + b + (5121) = 17 222
b + (13201) = 17 222
b + 13201 (-13 201) = 17 222 (-13 201)
<u>b = 4021</u>

And to check answer we will substitute all variable for their found answers.
a + b + c = 17 222
(8080) + (4021) + (5121) = 17 222

Children = 8080
Men = 4021
Women = 5121

Tada! haha 

Hope that helps. For these questions, it's a good idea to write them out as I did in the beginning to get a feel for them....

 a + b + c = 17 222
b + c = 9142
a + c = 13 201

and then try to isolate and solve one variable and then go from there. :D

<u>
</u>


yawa3891 [41]3 years ago
3 0
M + W = 9142
W + C = 13201
Population: 17222
17222 - 13201  (W + C) = 4021
4021 = Men

M + W = 9142
so 9142 - 4021 = 5121 = Women

And W + C = 13201
so 13201 - 5121 = 8080

Check: 8080 + 5121 + 4021 = 17222
Happy to Help!
You might be interested in
Can anyone tell me if this is right
Rashid [163]

Answer:

yes it is correct

Step-by-step explanation:

5 0
2 years ago
Read 2 more answers
What fraction of a year are 31 days ?
Alborosie

9514 1404 393

Answer:

  • non-leap years: 31/365
  • leap years: 31/366

Step-by-step explanation:

As a fraction of the number of days in a calendar year, it will depend on whether the year is a leap year.

non-leap years have 365 days, so 31 days is 31/365 years.

leap years have 366 days, so 31 days is 31/366 years.

_____

If you're asking for the purpose of computing interest, you need to be aware that "ordinary interest" counts 360 days in a year. 31 days would be 31/360 years. "Exact interest" counts 365 days in a year, so 31 days would be 31/365 years.

In astronomy, the definitions of "day" and "year" may vary, depending on the frame of reference and what direction in space marks the boundary of the period. The precise fraction will depend on how you define these terms and where the clock is located.

5 0
2 years ago
Write -1/19, 7/4, -4/7 from least to greatest
zysi [14]

Answer:

-4/7, -1/19, 7/4

Step-by-step explanation:

The fractions converted into decimals would be -0.05, 1.75, -0.57

4 0
3 years ago
If -y-2x^3=Y^2 then find D^2y/dx^2 at the point (-1,-2) in simplest form
algol13

Answer:

\frac{d^2y}{dx^2} = \frac{-4}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-y - 2x³ = y²

Rate of change of tangent line at point (-1, -2)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Basic Power Rule]:                                                  -y'-6x^2=2yy'
  2. [Algebra] Isolate <em>y'</em> terms:                                                                              -6x^2=2yy'+y'
  3. [Algebra] Factor <em>y'</em>:                                                                                       -6x^2=y'(2y+1)
  4. [Algebra] Isolate <em>y'</em>:                                                                                         \frac{-6x^2}{(2y+1)}=y'
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-6x^2}{(2y+1)}

<u>Step 3: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{-12x(2y+1)+6x^2(2y')}{(2y+1)^2}
  2. [Derivative] Simplify:                                                                                       y'' = \frac{-24xy-12x+12x^2y'}{(2y+1)^2}
  3. [Derivative] Back-Substitute <em>y'</em>:                                                                     y'' = \frac{-24xy-12x+12x^2(\frac{-6x^2}{2y+1} )}{(2y+1)^2}
  4. [Derivative] Simplify:                                                                                      y'' = \frac{-24xy-12x-\frac{72x^4}{2y+1} }{(2y+1)^2}

<u>Step 4: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em> and <em>y</em>:                                                                     y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(-1)^4}{2(-2)+1} }{(2(-2)+1)^2}
  2. [Pre-Algebra] Exponents:                                                                                      y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(1)}{2(-2)+1} }{(2(-2)+1)^2}
  3. [Pre-Algebra] Multiply:                                                                                   y''(-1,-2) = \frac{-48+12-\frac{72}{-4+1} }{(-4+1)^2}
  4. [Pre-Algebra] Add:                                                                                         y''(-1,-2) = \frac{-36-\frac{72}{-3} }{(-3)^2}
  5. [Pre-Algebra] Exponents:                                                                               y''(-1,-2) = \frac{-36-\frac{72}{-3} }{9}
  6. [Pre-Algebra] Divide:                                                                                      y''(-1,-2) = \frac{-36+24 }{9}
  7. [Pre-Algebra] Add:                                                                                          y''(-1,-2) = \frac{-12}{9}
  8. [Pre-Algebra] Simplify:                                                                                    y''(-1,-2) = \frac{-4}{3}
6 0
2 years ago
Thanks for the help ;)
Pani-rosa [81]

Answer:

A.

Step-by-step explanation:

3 0
2 years ago
Read 2 more answers
Other questions:
  • The sum of two consecutive whole numbers is 97 what are the two numbers?
    13·1 answer
  • What does the graph show
    8·2 answers
  • G is the incenter, or point of concurrency, of the angle bisectors of ΔACE.
    12·1 answer
  • A map has a scale of 1:25 000.
    11·1 answer
  • a cityhas a population density of approximately 46 people per square mile.if the city is 6,521.74 mi2, then approximately how ma
    7·1 answer
  • How many pounds of cheese do they put on each pizza?
    15·1 answer
  • How do i factor (6x+3x)(12x-24x+36)
    8·1 answer
  • JANITIA IS 15 YEARS OLD AND HER BROTHER IS 5 YEARS. WHAT IS THE RATIO OF JANTIA AGE TO HER BROTHER AGE
    6·2 answers
  • Pls whats the solution to this question.<br>(x-1÷x)^6.<br>and also solve with full workings.​
    6·1 answer
  • Factorize no i, l, o​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!