It's difficult to make out what the force and displacement vectors are supposed to be, so I'll generalize.
Let <em>θ</em> be the angle between the force vector <em>F</em> and the displacement vector <em>r</em>. The work <em>W</em> done by <em>F</em> in the direction of <em>r</em> is
<em>W</em> = <em>F</em> • <em>r</em> cos(<em>θ</em>)
The cosine of the angle between the vectors can be obtained from the dot product identity,
<em>a</em> • <em>b</em> = ||<em>a</em>|| ||<em>b</em>|| cos(<em>θ</em>) ==> cos(<em>θ</em>) = (<em>a</em> • <em>b</em>) / (||<em>a</em>|| ||<em>b</em>||)
so that
<em>W</em> = (<em>F</em> • <em>r</em>)² / (||<em>F</em>|| ||<em>r</em>||)
For instance, if <em>F</em> = 3<em>i</em> + <em>j</em> + <em>k</em> and <em>r</em> = 7<em>i</em> - 7<em>j</em> - <em>k</em> (which is my closest guess to the given vectors' components), then the work done by <em>F</em> along <em>r</em> is
<em>W</em> = ((3<em>i</em> + <em>j</em> + <em>k</em>) • (7<em>i</em> - 7<em>j</em> - <em>k</em>))² / (√(3² + 1² + 1²) √(7² + (-7)² + (-1)²))
==> <em>W</em> ≈ 5.12 J
(assuming <em>F</em> and <em>r</em> are measured in Newtons (N) and meters (m), respectively).
So long as the perimeters are the same, rectangles and squares share the same area. For example, a square that is 2m by 2m across is 4m squared. A rectangle of 4m by 1m across is still 4m squared.
Therefore all we want to do here is see how big we can make our “square” perimeter using the creek. We have three sides to spread 580ft across, therefore if we divide this by 3, we get 193.3ft of fencing per side. If we then square this figure, we will then get the maximum possible area, which comes to 37,377ft squared. (That’s a huge garden).
Tbh i dont really remember how to this this but the only way i could think of solving it is saying how a spuare/rectangle have all equal sides so if they have all equal sides you can divide that number by 4 so 4/30=7.5 so i would say x = 7.5 tell me if its wrong
~ Good Luck :D ~
Answer:
$4320
Step-by-step explanation:
12 divided by 2 is 6
720 x 6 = 4320