We can use logic along with 3 linear equations to solve this problem.
For the three types of candies, we will write a slope-intercept form equation. We know what m (slope) is for each equation, and there is no y-intercept because there is no starting point.
Equations:
Mints: y=.96x
Chocolates: y=4.70x
Lollipops: y=.07x
Using the given information, we can use the equations in function form. We know what x (input) is for all three types of candy, and that will give us y (output), which is the total for that candy type.
Solving:
Mints: y=.96(.75)
Chocolates: y=4.70(1.5)
Lollipops: y=.07(15)
We just input our information into the equations. Using logic, we know that we will have to multiply the cost of the candy by the number of candies to get the total of the three types.
Totals:
Mints: y=.72
Chocolates: y=7.05
Lollipops: y=1.05.
*Recall that y=total cost of candy for each type.
Now, we just simply add the three costs up to get the total sum that the candy will cost:
.72+7.05+1.05=8.82
Therefore, all the candy will cost $8.82.
The equation given is:
10 5/18 - 8 5/6
Turn the equations to improper fractions
[10*18 +5] = 185
[8 * 6 + 5]= 53
185/18 - 53/6
[185 - 159]/18 = 26/18
26/18 = 1 8/18.
Answer: I believe that it is C, might be B but I am pretty sure that it is a reflection in the X axis. I would go with C, Hope this helps you
Step-by-step explanation:
Answer:
angle ABC= 2* 61= 122
Step-by-step explanation:
Answer:
a.) Probability = 1/5
b.) 10 soda
Step-by-step explanation:
Probability is a game of chance.
The initial chance = 1/12
If Lucky Lucy bought five sodas and won a free one with four of the caps. The probability of that happening will be 1/5
Having a greater than 50% chance of winning a free soda means having probability greater than half. That is,
Probability > 1/2
You would have to buy (12 - 2) soda. Which is equal to 10.