the correct answer is A.
Each atom has three sub particles, which are electron, proton and neutron. To get the atomic mass for each atom, one has to add the masses of the proton, neutron and electron in an atom. For each atom, the major contributors to its mass are proton and neutron, this is because the mass of the electron is very small indeed. Thus, the atomic mass of an element is usually in the range of its mass number, which is obtained by the summation of proton and neutron. Since it is the number of proton that indicate an atomic number and it is the mass number that indicate atomic mass, therefore, atomic mass can be greater than the atomic number.
Explanation:
To break a chemical bond, it is required that particles must have certain amount of energy so that when they can collide with each other due to this energy.
Therefore, there will exist a certain amount of force between the particles which will help in breaking the chemical bond.
This energy due to the motion of particles is known as kinetic energy.
Thus, we can conclude that to break a chemical bond, particles need to collide with a certain amount of kinetic energy.
383 mL of 3.50 M muriatic acid solution
Explanation:
First we calculate the number of moles of HCl:
number of moles = mass / molecular weight
number of moles of HCl = 47.7 / 35.5 = 1.34 moles
Now to determine the volume of the 3.50 M muriatic acid (clorhidric acid) solution, we use the following formula:
molar concentration = number of moles / volume (L)
volume (L) = number of moles / molar concentration
volume of the muriatic acid solution = 1.34 / 3.5 = 0.383 L = 383 mL
Learn more about:
molar concentration
brainly.com/question/10270173
brainly.com/question/10608366
#learnwithBrainly
A pure element unbound or in a diatomic state, such as cl2, always has an oxidation number of 0 (zero).
<h3>Why does pure element or a diatomic molecule has zero oxidation state?</h3>
In a neutral substance with atoms of only one element, the oxidation number of an atom is zero. As a result, the oxidation number of the atoms in O2, O3, P4, S8, and aluminum metal is 0. The oxidation numbers for an element in its normal state will be zero. O2 and Cl2 are diatomic gas molecules that occur naturally, thus when they are in that state, they have an oxidation state of zero. Metals like zinc will also have an oxidation number of zero if they are in their natural solid state.
O2 and Cl2 are neutral diatomic, hence they will always have a zero oxidation state. It is impossible for one oxygen atom to have a negative 2 charge while the other has a positive 2. The oxidation states should be 0 if the elements are solids, liquids, or any type of diatomic molecule.
Learn more about oxidation state here:
brainly.com/question/6707068
#SPJ4