The surrounding ecosystem in and around the water
Answer:
4
Explanation:
Carbon configuration- 2,4
Valence electrons means the outershell electrons
That means valence electrons=4
Answer:but-1-ene
Explanation:This is an E2 elimination reaction .
Kindly refer the attachment for complete reaction and products.
Sodium tert-butoxide is a bulky base and hence cannot approach the substrate 2-chlorobutane from the more substituted end and hence major product formed here would not be following zaitsev rule of elimination reaction.
Sodium tert-butoxide would approach from the less hindered side that is through the primary centre and hence would lead to the formation of 1-butene .The major product formed in this reaction would be 1-butene .
As the mechanism of the reaction is E-2 so it will be a concerted mechanism and as sodium tert-butoxide will start abstracting the primary hydrogen through the less hindered side simultaneously chlorine will start leaving. As the steric repulsion in this case is less hence the transition state is relatively stabilised and leads to the formation of a kinetic product 1-butene.
Kinetic product are formed when reactions are dependent upon rate and not on thermodynamical stability.
2-butene is more thermodynamically6 stable as compared to 1-butene
The major product formed does not follow the zaitsev rule of forming a more substituted alkene as sodium tert-butoxide cannot approach to abstract the secondary proton due to steric hindrance.
Answer:
2.68 cm^3
Explanation:
Density= Mass/Volume
so...
8.96 g/cm^3 = 24.01 g/ V
and then u solve so it would be 2.68 cm ^3
((:
The HCl added = 1.25 moles
and the moles of Na2HPO4 = 1 mole
Now when acid is added in the given solution of Na2HPO4
One mole of H+ will react with one mole of Na2HPO4 to given one mole of NaH2PO4
Na2HPO4 + H+ ---> NaH2PO4
Now this one mole formed NaH2PO4 will further react with 0.25 moles of H+ left to form 0.25 moles of H3PO4 and 0.75 moles of NaH2PO4 will remain in the solution
So this will result into formation of a buffer of phosphoric acid and NaH2PO4
NaH2PO4 + H+ ---> H3PO4
pKa of H3PO4 = 2.1
so pH = pKa + log [salt] / [acid] = 2.1 + log [0.75 / 0.25] = 2.58
so the pH will be in between 2.1 to 7.2