Answer:
Saturated Fats
Explanation:
Saturated fats are all of the above.
Also, Saturated fat is very unhealthy. Only consume it in small amounts.
Answer:
Mole fraction of Nacl is 0.173
Explanation:
we know that

where,
P
sol - the vapor pressure of the solution
χ solvent - the mole fraction of the solvent
P
∘
solvent - the vapor pressure of the pure solvent
This means that in order to be able to calculate the mole fraction of sodium chloride, you need to know what the vapor pressure of pure water is at
25
°
C You can use an online calculator to find that the vapor pressure of pure water at 25 C is equal to about 23.8 torr
.

=0.827
Also we know that

This means that the mole fraction of sodium chloride is
χ_{Nacl}= 1-Χ_{water}
= 1-0.827 =0.173
Quantitative means to count how many of something. The correct answer is B, It has two eyes. Hope this helps
Plastic bags are made up of plastic film, non-woven fabric, or plastic textile. The molecules that are present in plastic bags are polymers. Polymers are large molecules made up of repeating units called monomers.
I know this isn't much, but I hope it helps! :)
<span>Answer:
For this problem, you would need to know the specific heat of water, that is, the amount of energy required to raise the temperature of 1 g of water by 1 degree C. The formula is q = c X m X delta T, where q is the specific heat of water, m is the mass and delta T is the change in temperature. If we look up the specific heat of water, we find it is 4.184 J/(g X degree C). The temperature of the water went up 20 degrees.
4.184 x 713 x 20.0 = 59700 J to 3 significant digits, or 59.7 kJ.
Now, that is the energy to form B2O3 from 1 gram of boron. If we want kJ/mole, we need to do a little more work.
To find the number of moles of Boron contained in 1 gram, we need to know the gram atomic mass of Boron, which is 10.811. Dividing 1 gram of boron by 10.811 gives us .0925 moles of boron. Since it takes 2 moles of boron to make 1 mole B2O3, we would divide the number of moles of boron by two to get the number of moles of B2O3.
.0925/2 = .0462 moles...so you would divide the energy in KJ by the number of moles to get KJ/mole. 59.7/.0462 = 1290 KJ/mole.</span>