Answer:
I think your right :)
Step-by-step explanation:
15.78 is the answer to the qustion that you have asked.
2y +7x+4
I think.....
Hope this helps please Press Thanks! <3
Answer:
(a)0.16
(b)0.588
(c)![[s_1$ s_2]=[0.75,$ 0.25]](https://tex.z-dn.net/?f=%5Bs_1%24%20s_2%5D%3D%5B0.75%2C%24%20%200.25%5D)
Step-by-step explanation:
The matrix below shows the transition probabilities of the state of the system.

(a)To determine the probability of the system being down or running after any k hours, we determine the kth state matrix
.
(a)


If the system is initially running, the probability of the system being down in the next hour of operation is the 
The probability of the system being down in the next hour of operation = 0.16
(b)After two(periods) hours, the transition matrix is:

Therefore, the probability that a system initially in the down-state is running
is 0.588.
(c)The steady-state probability of a Markov Chain is a matrix S such that SP=S.
Since we have two states, ![S=[s_1$ s_2]](https://tex.z-dn.net/?f=S%3D%5Bs_1%24%20%20s_2%5D)
![[s_1$ s_2]\left(\begin{array}{ccc}0.90&0.10\\0.30&0.70\end{array}\right)=[s_1$ s_2]](https://tex.z-dn.net/?f=%5Bs_1%24%20%20s_2%5D%5Cleft%28%5Cbegin%7Barray%7D%7Bccc%7D0.90%260.10%5C%5C0.30%260.70%5Cend%7Barray%7D%5Cright%29%3D%5Bs_1%24%20%20s_2%5D)
Using a calculator to raise matrix P to large numbers, we find that the value of
approaches [0.75 0.25]:
Furthermore,
![[0.75$ 0.25]\left(\begin{array}{ccc}0.90&0.10\\0.30&0.70\end{array}\right)=[0.75$ 0.25]](https://tex.z-dn.net/?f=%5B0.75%24%20%200.25%5D%5Cleft%28%5Cbegin%7Barray%7D%7Bccc%7D0.90%260.10%5C%5C0.30%260.70%5Cend%7Barray%7D%5Cright%29%3D%5B0.75%24%20%200.25%5D)
The steady-state probabilities of the system being in the running state and in the down-state is therefore:
![[s_1$ s_2]=[0.75$ 0.25]](https://tex.z-dn.net/?f=%5Bs_1%24%20s_2%5D%3D%5B0.75%24%20%200.25%5D)
1) Dimensiones of the cardboard:
length: 10 inches
width: 8 inches
2) dimensions of the squares cut
length: x
width: x
3) dimensions of the box:
length of the base = 10 - 2x
width of the base = 8 - 2x
height = x
4) Volume of the box
V = (10 - 2x) (8 - 2x) x = x [80 - 20x - 16x + 4x^2] = x [ 80 - 36x + 4x^2 ] =
V = 80x - 36x^2 + 4x^3
5) Maximum volume => derivative of V, V' = 0
V' = 80 - 72x + 12x^2 = 0
6) Solve the equation
Divide by 4 => 3x^2 - 18x + 20 = 0
Use the quadratic formula: x = 1.47 and x = 4.53 (this is not valid)
So, the answer is the option C. 1.5 inches.