1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stepan [7]
3 years ago
14

Let f( x)=2x^2+7x and g(x)=-8x^2-3x+5. What is g(x)+f(x)?

Mathematics
1 answer:
Natalka [10]3 years ago
3 0

Answer:

-6x^2+4x+5

Step-by-step explanation:

g(x)+f(x)=(-8x^2-3x+5)+(2x^2+7x)

=-8x^2-3x+5+2x^2+7x

=-8x^2+2x^2-3x+7x+5

=-6x^2+4x+5

You might be interested in
Can someone please help me
Irina-Kira [14]
Using exponentials, the expression can be presented as the following:

= 7^(1/3) * 7^(1/2) / 7^(1/6)= 7^(1/3 + 1/2 - 1/6)= 7^(2/6 + 3/6 - 1/6)= 7^(2/3)


I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!

4 0
3 years ago
Prove the following integration formula:
7nadin3 [17]

Answer:

See Explanation.

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Distributive Property
  • Equality Properties

<u>Algebra I</u>

  • Combining Like Terms
  • Factoring

<u>Calculus</u>

  • Derivative 1:                  \frac{d}{dx} [e^u]=u'e^u
  • Integration Constant C
  • Integral 1:                      \int {e^x} \, dx = e^x + C
  • Integral 2:                     \int {sin(x)} \, dx = -cos(x) + C
  • Integral 3:                     \int {cos(x)} \, dx = sin(x) + C
  • Integral Rule 1:             \int {cf(x)} \, dx = c \int {f(x)} \, dx
  • Integration by Parts:    \int {u} \, dv = uv - \int {v} \, du
  • [IBP] LIPET: Logs, Inverses, Polynomials, Exponents, Trig

Step-by-step Explanation:

<u>Step 1: Define Integral</u>

\int {e^{au}sin(bu)} \, du

<u>Step 2: Identify Variables Pt. 1</u>

<em>Using LIPET, we determine the variables for IBP.</em>

<em>Use Int Rules 2 + 3.</em>

u = e^{au}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = sin(bu)du\\du = ae^{au}du \ \ \ \ \ \ \ \ \ v = \frac{-cos(bu)}{b}

<u>Step 3: Integrate Pt. 1</u>

  1. Integrate [IBP]:                                           \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} - \int ({ae^{au} \cdot \frac{-cos(bu)}{b} }) \, du
  2. Integrate [Int Rule 1]:                                                \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{a}{b} \int ({e^{au}cos(bu)}) \, du

<u>Step 4: Identify Variables Pt. 2</u>

<em>Using LIPET, we determine the variables for the 2nd IBP.</em>

<em>Use Int Rules 2 + 3.</em>

u = e^{au}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = cos(bu)du\\du = ae^{au}du \ \ \ \ \ \ \ \ \ v = \frac{sin(bu)}{b}

<u>Step 5: Integrate Pt. 2</u>

  1. Integrate [IBP]:                                                  \int {e^{au}cos(bu)} \, du = \frac{e^{au}sin(bu)}{b} - \int ({ae^{au} \cdot \frac{sin(bu)}{b} }) \, du
  2. Integrate [Int Rule 1]:                                    \int {e^{au}cos(bu)} \, du = \frac{e^{au}sin(bu)}{b} - \frac{a}{b} \int ({e^{au} sin(bu)}) \, du

<u>Step 6: Integrate Pt. 3</u>

  1. Integrate [Alg - Back substitute]:     \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{a}{b} [\frac{e^{au}sin(bu)}{b} - \frac{a}{b} \int ({e^{au} sin(bu)}) \, du]
  2. [Integral - Alg] Distribute Brackets:          \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2} - \frac{a^2}{b^2} \int ({e^{au} sin(bu)}) \, du
  3. [Integral - Alg] Isolate Original Terms:     \int {e^{au}sin(bu)} \, du + \frac{a^2}{b^2} \int ({e^{au} sin(bu)}) \, du= \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}
  4. [Integral - Alg] Rewrite:                                (\frac{a^2}{b^2} +1)\int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}
  5. [Integral - Alg] Isolate Original:                                    \int {e^{au}sin(bu)} \, du = \frac{\frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}}{\frac{a^2}{b^2} +1}
  6. [Integral - Alg] Rewrite Fraction:                          \int {e^{au}sin(bu)} \, du = \frac{\frac{-be^{au}cos(bu)}{b^2} + \frac{ae^{au}sin(bu)}{b^2}}{\frac{a^2}{b^2} +\frac{b^2}{b^2} }
  7. [Integral - Alg] Combine Like Terms:                          \int {e^{au}sin(bu)} \, du = \frac{\frac{ae^{au}sin(bu)-be^{au}cos(bu)}{b^2} }{\frac{a^2+b^2}{b^2} }
  8. [Integral - Alg] Divide:                                  \int {e^{au}sin(bu)} \, du = \frac{ae^{au}sin(bu) - be^{au}cos(bu)}{b^2} \cdot \frac{b^2}{a^2 + b^2}
  9. [Integral - Alg] Multiply:                               \int {e^{au}sin(bu)} \, du = \frac{1}{a^2+b^2} [ae^{au}sin(bu) - be^{au}cos(bu)]
  10. [Integral - Alg] Factor:                                 \int {e^{au}sin(bu)} \, du = \frac{e^{au}}{a^2+b^2} [asin(bu) - bcos(bu)]
  11. [Integral] Integration Constant:                     \int {e^{au}sin(bu)} \, du = \frac{e^{au}}{a^2+b^2} [asin(bu) - bcos(bu)] + C

And we have proved the integration formula!

6 0
3 years ago
Read 2 more answers
Write the equation of the line perpendicular to
r-ruslan [8.4K]
Solving for y, we add 5y to both sides and subtract 4, getting 9x-4=5y. Dividing both sides by 5, we get 9x/5-4/5=y. Since the slope is 9/5 (since 9/5*x=9x/5), we multiply it by -1 and find the reciprocal of it to get -5/9 as the perpendicular slope, so -5x/9+b=y. Plugging 1 in for x and -6 in for y, we get -5*1/9+b=-6 and by adding 5/9 to both sides we get -5-4/9=b , and since in y=mx+b y and x are variables, we end up with y=-5x/9+(-5-4/9) for slope intercept form.

To get it into standard form, we need it in ay+cx=b with a, b, and c being constants. Adding 5x/9 to both sides, we end up with y+5x/9=(-5-4/9) for standard form


5 0
3 years ago
y- 8x-2 and y Rajib wrote the equations5. What can Rajib conclude about the solution to this system ofequations?o The point (2,1
ale4655 [162]
Its just a matter of subbing in ur answer choices to see which ones are correct...but remember, for it to be a solution, it has to satisfy BOTH equations.

(-1/4,-4)
y = 8x - 2
-4 = 8(-1/4) - 2
-4 = - 8/4 - 2
-4 = -2-2
-4 = -4 (correct)

(-1/4,-4)
y = -4x - 5
-4 = -4(-1/4) - 5
-4 = 1 - 4
-4 = -4 (correct)

Therefore, ur solution is (-1/4,-4)
8 0
3 years ago
Read 2 more answers
Solve to find x and y in the diagram. HELP ASAP!!
Lapatulllka [165]
X=12, y=7.5

Here is an explanation if you want to know how to do it:

First, look at the diagram and think about what you know so far. Since the lines are parallel, 5x+4y and 12y must be equal. We also know that there is a right angle, so since both angles are equal, 12y=90 and 5x+4y=90.

Solve for y by dividing 90 by 12 to get 7.5, so y=7.5. Sub in this value to the equation on top and you should get 5x+4(7.5)=90 4(7.5)=30, so subtract that from 90 to get 60 and divide 60 by 5 to get 12, so x=12.
5 0
3 years ago
Other questions:
  • Please please help me with this quick question!
    7·1 answer
  • The width of a rectangle is 7 meters greater than its length
    14·1 answer
  • PLSSS ANSWER QUICKLYYY!!!! Adrian loses $4, then earns $8. Did Adrian gain or lose overall?
    13·2 answers
  • I need to know what this equals
    9·1 answer
  • Find the perimeter and area of a triangle with the vertices and (3,0) and (6,4)
    9·1 answer
  • Y = (0.99)3t<br> growth or decay??
    12·1 answer
  • NEED HELP ASAP!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1
    8·1 answer
  • PLEASE HELP DUE BY MIDNIGHT ILL GIVE YOU BRAINLINEST and 17 POINTS
    12·1 answer
  • Can anyone help me with this please <br> Don’t answer if you do not know .
    11·1 answer
  • Which equation represents a linear function 2ry+y= 9 , y=12r-5 , 3y+r2+t=0, 4r+2(y-1)=0
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!