Answer:
A. transmission genetics
B. population genetics
C. molecular genetics
D. genomics
E. molecular genetics
Explanation:
Transmission genetics can be defined as the study of the mechanisms involved in the inheritance of genetic material by offspring from parents. This discipline started with the discovery of inherited characteristics in pea plants by Mendel (1865).
Population genetics is a subdiscipline of genetics that studies genetic variation within and between populations. Population genetics is an area that explains how allele and genotypic frequencies change across time, thereby this subdiscipline is closely linked to evolutionary biology.
Genomics is a broad area of genetics that studies the function, evolution, structure, function, mapping and comparison of genomes (i.e., the whole genetic material contained in each cell of a given organism). This discipline aims at understanding entire gene pools. Genomics includes different research areas including structural genomics, functional genomics, epigenomics and metagenomics.
Molecular genetics is a sub-discipline of genetics that studies the mechanisms involved in preserving the genetic material (i.e., DNA and RNA), and to understand how the structure and expression of the genetic material influence the observed variation among organisms.
In plants, photosynthesis, occurring in chloroplasts, is an anabolic (bond-building) process whereby CO2 and H2O combine with the use of light (photon) energy. This yields O2 and sugar (i.e. glucose). This occurs in 2 phases: light-dependent and dark (Calvin cycle) reactions, which both continually recycle ADP/ATP and NADP/NADPH.
The catabolic (bond-breaking) process in plants is cellular respiration, in which glucose is broken down with O2 by glycolysis (cytoplasm only) and mitochondrial reactions (Krebs cycle and E.T.C.) to yield CO2 and H2O. These reactions recycle ADP/ATP and NAD/NADH. The CO2 and water produced by cellular respiration feed into the photosynthetic processes, and in turn, the O2 and glucose resulting from photosynthesis supply the respiratory reactions.
Answer and Explanation:
The transport and digestion of proteins is done by other proteins called enzymes. An example of this occurs in the biochemical digestion of proteins, where the enzyme pepsin promotes digestion, the breakdown of proteins into smaller pieces, through hydrolysis which is the breakdown of molecules with the use of water. These pieces of the protein are transported to the duodenum where they are digested again by the enzyme enterokinase.
The organism would be a secondary consumer and a carnivore. An example could be an snake in the following food chain: grass -> bunny -> snake
Answer:
what kind of quastion is this
Explanation: