To get the mean, you add all of the numbers, and then divide the answer by the number of numbers.
15+(-6)= 9
9+12= 21
(21+x= q )⬅️ignore this for now, that's where the unknown number would have been
The mean = 5, and the number of numbers is 4, so basically, you find 5•4=20
So take the 21 from before, and if you add -1, you get 20!
So, x= ➖1⃣!!!!!!! (That's a -1)
Nine hundred fifty-four thousandths.
Answer:
its 5
Step-by-step explanation:
it's in between them
P(t) = P₀ e^(kt)
<span>Where P₀ is the initial population, </span>
<span>P(t) is the population after "t" time. </span>
<span>t is your rate (can be hours, days, years, etc. in this case, hours) </span>
<span>k is the growth constant for this particular problem. </span>
<span>So using the information given, solve for k: </span>
<span>P₀ = 2000 </span>
<span>P(4) = 2600 </span>
<span>P(t) = P₀ e^(kt) </span>
<span>2600 = 2000e^(k * 4) </span>
<span>1.3 = e^(4k) </span>
<span>Natural log of both sides: </span>
<span>ln(1.3) = 4k </span>
<span>k = ln(1.3) / 4 </span>
<span>Now that we have a value for "k", use that, the same P₀, then solve for P(17): </span>
<span>P(t) = P₀ e^(kt) </span>
<span>P(17) = 2000 e^(17ln(1.3) / 4) </span>
<span>Using a calculator to get ln(1.3) then to simplify from there, we get: </span>
<span>P(17) ≈ 2000 e^(17 * 0.262364 / 4) </span>
<span>P(17) ≈ 2000 e^(4.460188 / 4) </span>
<span>P(17) ≈ 2000 e^(1.115047) </span>
<span>P(17) ≈ 2000 * 3.0497 </span>
<span>P(17) ≈ 6099.4 </span>
<span>Rounded to the nearest unit: </span>
<span>P(17) ≈ 6099 bacteria hope i could help =)))</span>