Answer:
The answer is "Photosynthesis creates glucose (sugar) which is used in cellular respiration."
Explanation:
Photosynthesis makes the glucose that is used in cellular respiration to make ATP. The glucose is then turned back into carbon dioxide, which is used in photosynthesis. While water is broken down to form oxygen during photosynthesis, in cellular respiration oxygen is combined with hydrogen to form water. While photosynthesis requires carbon dioxide and releases oxygen, cellular respiration requires oxygen and releases carbon dioxide. It is the released oxygen that is used by us and most other organisms for cellular respiration. We breathe in that oxygen, which is carried through our blood to all our cells. In our cells, oxygen allows cellular respiration to proceed. Cellular respiration works best in the presence of oxygen. Without oxygen, much less ATP would be produced.
Learn more at https://flexbooks.ck12.org/cbook/ck-12-middle-school-life-science-2.0/section/2.17/primary/lesson/connecting-cellular-respiration-and-photosynthesis-ms-ls
Hope this helps and brainliest? Thanks.
it aids her because it is part of her name and it is helping her by letting her know that she is one of a kind
Their shapes fit snugly together
Answer:
Explanation:
They are probably archeabacteria because the colony lives in an extreme environment.
Explanation:
Archeabacteria are singled cell microorganisms that live in extreme environment. They are found in hot springs, salt lakes, oceans, soils and marshlands. They posses different shapes like rods, spheres, spiral and plates. Thermophiles, halophiles, and methanogens are the three types of archeabacteria.
Eubacteria are microorganisms that are found in most of the earth's habitats like soil, water, etc. They are have different shapes like cocci, bacilli, filaments, vibro,etc. They do not live in extreme environment unlike the archeabacteria. This is the major difference between the archeabacteria and eubacteria.
Both archeabacteria and eubacteria
are prokaryotes. Archeabacteria can both be autotrophic or heterotrophic and can live in places without oxygen. Some eubacteria are autotrophs and some are heterotrophs.