Answer:
12
Step-by-step explanation:
Answer: ok so Let's simplify step-by-step.
r−3q+5p−(−4r−3q−8p)
Distribute the Negative Sign:
=r−3q+5p+−1(−4r−3q−8p)
=r+−3q+5p+−1(−4r)+−1(−3q)+−1(−8p)
=r+−3q+5p+4r+3q+8p
Combine Like Terms:
=r+−3q+5p+4r+3q+8p
=(5p+8p)+(−3q+3q)+(r+4r)
=13p+5r
Step-by-step explanation:
Answer:
Number of dogs = 6
Number of burgers = 11
Step-by-step explanation:
Number of dogs = x
Number of burgers = 2x - 1
Cost of a dog = $ 1.50
Cost of 'x' dogs = 1.5x
Cost of a burger = $ 2
Cost of (2x - 1) burger = (2x -1) * 2 = 2x *2 - 1*2
= 4x - 2
Total amount collected = $ 31
1.5x + 4x - 2 = 31 {add 2 to both sides}
1.5x + 4x = 31 + 2
1.5x+ 4x = 33
5.5x = 33
x = 33/5.5
x = 6
Number of dogs = 6
Number of burgers = 2*6 - 1 = 12 - 1 = 11
Answer:
Infinite number of solutions.
Step-by-step explanation:
We are given system of equations



Firs we find determinant of system of equations
Let a matrix A=
and B=![\left[\begin{array}{ccc}-1\\1\\-3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-1%5C%5C1%5C%5C-3%5Cend%7Barray%7D%5Cright%5D)


Determinant of given system of equation is zero therefore, the general solution of system of equation is many solution or no solution.
We are finding rank of matrix
Apply
and 
:![\left[\begin{array}{ccc}-5\\1\\-5\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-5%5C%5C1%5C%5C-5%5Cend%7Barray%7D%5Cright%5D)
Apply
:![\left[\begin{array}{ccc}-5\\6\\-5\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-5%5C%5C6%5C%5C-5%5Cend%7Barray%7D%5Cright%5D)
Apply 
:![\left[\begin{array}{ccc}-5\\6\\1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-5%5C%5C6%5C%5C1%5Cend%7Barray%7D%5Cright%5D)
Apply
and 
:![\left[\begin{array}{ccc}-5\\\frac{13}{2}\\-\frac{1}{2}\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-5%5C%5C%5Cfrac%7B13%7D%7B2%7D%5C%5C-%5Cfrac%7B1%7D%7B2%7D%5Cend%7Barray%7D%5Cright%5D)
Apply 
:![\left[\begin{array}{ccc}-\frac{9}{2}\\\frac{13}{2}\\-\frac{1}{2}\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-%5Cfrac%7B9%7D%7B2%7D%5C%5C%5Cfrac%7B13%7D%7B2%7D%5C%5C-%5Cfrac%7B1%7D%7B2%7D%5Cend%7Barray%7D%5Cright%5D)
Rank of matrix A and B are equal.Therefore, matrix A has infinite number of solutions.
Therefore, rank of matrix is equal to rank of B.