✧・゚: *✧・゚:* *:・゚✧*:・゚✧
Hello!
✧・゚: *✧・゚:* *:・゚✧*:・゚✧
❖ The correct answer choice is C) diploid.
~ ʜᴏᴘᴇ ᴛʜɪꜱ ʜᴇʟᴘꜱ! :) ♡
~ ᴄʟᴏᴜᴛᴀɴꜱᴡᴇʀꜱ
Answer:
I think the answer is A
Explanation:
Since the question states that they want to determine the population of the desert mice. You get the direct answer from just using context clues. Since population means one species in a certain area, it means that this method will work if the mice stay in the same area.
Answer:
It is important to have more than one piece of evidence to make sure that the evidence is actually evidence. Or in other words, that the evidence is proven true. With only one piece of evidence, you can't be fully sure if calculations were correct, if the source was trustworthy, etc.
Multiple evidence is kinda like double checking math problems. If you don't do it, you can't be 100% certain the answer is correct.
Answer:
The oxygen dissociation curve represents the percentage saturation of Hb with oxygen at different partial pressure of oxygen. The different partial pressures gives sigmoid shapes to the curve. When this curves shifts to right, it indicates low affinity or binding of oxygen by the Hb. it also indicates the unloading or releases of Oxygen by Hb molecules at condition of low pressure. e,g in the muscles during strenuous exercise.However, when the curve shifts to the left, this indicate high affinity for oxygen, great binding, at high partial pressure of oxygen.e,g in the lungs to take oxygen and releases CO2.
Therefore in this scenario, the statement -. <u>During strenuous exercise, the oxygen-hemoglobin dissociation curve shifts to the right.</u> is correct. because oxygen is needed by the muscles therefore ,oxygen should be less binded by Hb, decrease affinity and easily unloaded to muscles.
<u>The statement </u>This rightward shift reflects an increase in the affinity of hemoglobin for oxygen and favors loading of O2 into hemoglobin in the lungs is wrong.
As explained above the rightwards shift indicated low affinity of Hb for oxygen(unloading)and favours unloading at the muscles because during strenuous exercise the partial pressure of oxygen is very low(but that of CO2 high) in the muscles which favours low oxygen molecules binding by Hb, and easy release to respiring cells.
Explanation:
Bacteria, archaea, fungi, algae