Answer:
Potassium
Explanation:
Most reactive metal in the reactivity series
The balanced chemical reaction is written as:
<span>CH4 (g) + 2 O2 (g) ----> CO2 (g) + 2 H2O (g)
</span>
We are given the amount of water to be produced from the reaction. This amount will be used for the calculations. Calculations are as follows:
12.4 L H2O ( 1 mol / 22.4 L ) ( 1 mol CH4 / 2 mol H2O ) ( 22.4 L / 1 mol ) = 6.2 L CH4
(For a bit of context I will use the reaction between HCl and Mg as an example)
The larger the surface area of the magnesium metal, the more particles are exposed to collide with the aqueous HCl particles to cause the reaction to occur. This increases the frequency per second of collisions, speeding up the rate of reaction.
The effect of a catalyst is to reduce the minimum collision energy which allows the reaction to happen. This does not increase the number of collisions per second, but increases the percentage of successful collisions, which consequently causes the rate of reaction to increase .
I have drawn diagrams showing the effect of surface area, but there isn't really a meaningful diagram that I know of to show the impact of a catalyst (at least not at GCSE level).
Answer:
The new volume of the balloon be
.
Explanation:
We have,
Initial volume is 556 cm ³
The temperature of the balloon decreases from 278 K to 231 K.
We need to find the new volume of the balloon if the pressure is constant.
The Charles law states that at constant pressure, the volume of gas is directly proportional to its temperature i.e.
, P is constant


So, the new volume of the balloon be
.
Answer:
2H2S (g) + 3O2 (g) → 2H2O (l) + 2SO2 (g)
Calculate ΔH° from the given data. Is the reaction exothermic or endothermic?
ΔH°f (H2S) = -20.15 kJ/mol; ΔH°f (O2) = 0 kJ/, mol; ΔH°f (H2O) = -285.8 kJ/mol; ΔH°f (SO2) = -296.4 kJ/mol