The final temperature is -138 °C.
Explanation:
Using the equation of specific heat

We can easily find the final temperature of a 73.174 g of copper sample. As we know that specific heat is the amount of energy required to raise the temperature of the object to 1°C.
The specific heat of copper is known as 0.387 J/g°C and the initial temperature is said as 102 °C . The mass is given as 73.174 g. The heat released is 6800 J.
Since the heat is released the Q value will be negative.



Thus, the final temperature is -138 °C.
Answer:
Here, acceleration due to gravity(a) is assumed as 10m/s².We can also take it as 9.8m/s²
Explanation:
Answer:
7.5 gm left
Explanation:
Bismuth-210 has a half life of 5 days
15 days is 15/5 = 3 half lives
since half the amount is left in 5 days or 1 half life
(1/2) x (1/2) x (1/2) the staring amount would be left in
3 half lives. so 1/8 is left
(1/8) x 60.0 = 7.5 gm left
Answer:
Conclusion
Explanation:
I believe you were asking for the term that best matches with the description given. Typically the conclusion summarizes your experiment in a 1 to 2 paragraph format.
Answer:
LiCl = 0.492 m
Explanation:
Molal concentration is the one that indicates the moles of solute that are contained in 1kg of solvent.
Our solute is lithium chloride, LiCl.
Our solvent is distilled water.
We do not have the mass of water, but we know the volume, so we should apply density to determine mass.
Density = mass / volume
Density . volume = mass
1 g/mL . 19.7 mL = 19.7 g
We convert g to kg → 19.7 g . 1 kg / 1000g = 0.0197 kg
Let's determine the moles of LiCl
0.411 g . 1 mol / 42.394 g = 9.69×10⁻³ moles
Molal concentration (m) = 9.69×10⁻³ mol / 0.0197 kg → 0.492 m