HoHm : B means that starting at point B, you do a half-turn about m. This puts point B where A is. Continuing, this point is again allowed to to do a half-turn but this about o so that the point ends up at C.
The answer is Point C.<span />
        
                    
             
        
        
        
8.9
The equation for the grain size is expressed as the equality:
Nm(M/100)^2 = 2^(n-1)
where
Nm = number of grains per square inch at magnification M.
M = Magnification
n = ASTM grain size number
Let's solve for n, then substitute the known values and calculate.
Nm(M/100)^2 = 2^(n-1)
log(Nm(M/100)^2) = log(2^(n-1))
log(Nm) + 2*log(M/100) = (n-1) * log(2)
(log(Nm) + 2*log(M/100))/log(2) = n-1
(log(Nm) + 2*log(M/100))/log(2) + 1 = n
(log(33) + 2*log(270/100))/log(2) + 1 = n
(1.51851394 + 2*0.431363764)/0.301029996 + 1 = n
(1.51851394 + 0.862727528)/0.301029996 + 1 = n
2.381241468/0.301029996 + 1 = n
7.910312934 + 1 = n
8.910312934 = n
So the ASTM grain size number is 8.9
If you want to calculate the number of grains per square inch, you'd use the 
same formula with M equal to 1. So:
Nm(M/100)^2 = 2^(n-1)
Nm(1/100)^2 = 2^(8.9-1)
Nm(1/10000) = 2^7.9
Nm(1/10000) = 238.8564458
Nm = 2388564.458
Or about 2,400,000 grains per square inch.
        
             
        
        
        
Answer:
A good display will help to summarize a distribution by reporting the center, spread, and shape for that variable. ... In these plots the horizontal axis represents the values of the variable and the height of the bar represents how many observations are equal to the particular value.
Step-by-step explanation: