Construction workers need to use scale drawings, engineers and architects. They might uset hem by plotting them out on blue prints, to see it to scale.
To prove this inequality we need to consider three cases. We need to see that the equation is symmetric and that switching the variables x and y does not change the equation.
Case 1: x >= 1, y >= 1
It is obvious that
x^y >= 1, y^x >= 1
x^y + y^x >= 2 > 1
x^y + y^x > 1
Case 2: x >= 1, 0 < y < 1
Considering the following sub-cases:
- x = 1, x^y = 1
- x > 1,
Let x = 1 + n, where n > 0
x^y = (1 + n)^y = f_n(y)
By Taylor Expansion of f_e(y) around y = 0,
x^y = f_n(0) + f_n'(0)/1!*y + f_n''(0)/2!*y^2 + ...
= 1 + ln(1 + n)/1!*y + ln(1 + n)^2/2!*y^2 + ...
Since ln(1 + n) > 0,
x^y > 1
Thus, we can say that x^y >= 1, and since y^x > 0.
x^y + y^x > 1
By symmetry, 0 < x < 1, y >= 1, also yields the same.
Case 3: 0 < x, y < 1
We can prove this case by fixing one variable at a time and by invoking symmetry to prove the relation.
Fixing the variable y, we can set the expression as a function,
f(x) = x^y + y^x
f'(x) = y*x^(y-1) + y^x*ln y
For all x > 0 and y > 0, it is obvious that
f'(x) > 0.
Hence, the function f(x) is increasing and hence the function f(x) would be at its minimum when x -> 0+ (this means close to zero but always greater than zero).
lim x->0+ f(x) = 0^y + y^0 = 0 + 1 = 1
Thus, this tells us that
f(x) > 1.
Fixing variable y, by symmetry also yields the same result: f(x) > 1.
Hence, when x and y are varying, f(x) > 1 must also hold true.
Thus, x^y + y^x > 1.
We have exhausted all the possible cases and shown that the relation holds true for all cases. Therefore,
<span> x^y + y^x > 1
----------------------------------------------------
I have to give credit to my colleague, Mikhael Glen Lataza for the wonderful solution.
I hope it has come to your help.
</span>
Answer:
B. y > 14
y which is students age is greater than 14
ANSWER



EXPLANATION
For real number 'a',

is true because we have to plug in 'a' for x.

This is also true because limit of a constant is the constant.

is false. The correct value is


is also true because we have to substitute 5 for x.

is also false
The limit should be

ThIs QuESTIon
you’re welcome