<h3>
Answer:</h3>
298.15 K
<h3>
Explanation:</h3>
W e are supposed to calculate the Value of K at 25°C
Assuming the value of K represent K, the question wants us to convert degree Celsius to Kelvin.
- To convert degrees Celsius to kelvin scale, we use the relationship;
- Kelvin (K) = Degrees Celsius + 273.15 ; 273.5 is a constant
- That is, to convert temperature from °C to Kelvin we add a constant of 273.15 to the °C given.
In this case;
Temperature is 273.15 °c
Thus, to Kelvin scale temperature will be;
= 25°C + 273.15
= 298.15 K
Therefore, the value of K, at 25°C is 298.15 K
Answer:
Change in entropy for the reaction is
ΔS° = -268.13 J/K.mol
Explanation:
To calculate the change in entropy for the balanced reaction, we require the natural entropy of all the reactants and products in the reaction.
3 NO₂(g) + H₂O(l) → 2 HNO₃(l) + NO(g)
From Literature.
S°(NO₂) = 240.06 J/K.mol
S°(H₂O) = 69.91 J/K.mol
S°(HNO₃) = 155.60 J/K.mol
S°(NO) = 210.76 J/K.mol
These are the entropies of the reactants and products under standard conditions of 298.15 K and 1 atm.
Note that
ΔS° = Σ nᵢS°(for products) - Σ nᵢS°(for reactants)
Σ nᵢS°(for products) = [2 × S°(HNO₃)] + [1 × S°(NO)]
= (2 × 155.60) + (1 × 210.76) = 521.96 J/K.mol
Σ nᵢS°(for reactants) = [3 × S°(NO₂)] + [1 × S°(H₂O)]
= (3 × 240.06) + (1 × 69.91) =790.09 J/K.mol
ΔS° = Σ nᵢS°(for products) - Σ nᵢS°(for reactants)
ΔS° = 521.96 - 790.09 = -268.13 J/K.mol
Hope this Helps!!
If 1000 ml (1 L) of CH₃COOH contain 1.25 mol
let 250 ml of CH₃COOH contain x
⇒ x =
= 0.3125 mol
∴ moles of CH₃COOH in 250ml is 0.3125 mol
Now, Mass = mole × molar mass
= 0.3125 mol × [(12 × 2)+(16 × 2)+(1 × 4)] g/mol
= 18.75 g
∴ Mass of CH₃COOH present in a 250 mL cup of 1.25 mol/L solution of vinegar is <span>18.75 g</span>
Answer:
covalent bonds
Explanation:
ionic transfer of e^- ions formed (charges)
ionic=non-metal+ metal
ex: F+Ca
covalent sharing e^- no true charges
covalent= non-metal+ non-metal
ex: F+P
( my notes)