Answer:
Macromolecules. A very large organic molecule composed of many smaller molecules, 1)Carbohydrates, 2)proteins, 3)lipids, 4)nucleic acids. Three of the four classes of macromolecules that are polymers. 1.Carbohydrates.
If the acid is 100 percent dissociated in solutions of 1.0 M or less, it is called strong. Sulfuric acid is considered strong only in its first dissociation step; 100 percent dissociation isn't true as solutions become more concentrated.
It follows that the reaction is spontaneous at high temperatures Option A.
<h3>What is ΔS ?</h3>
The term ΔS is referred to as the change in the entropy of the system. Now recall that entropy is defined as the degree of disorderliness in a system. If a system is highly disorderly then it means that it has a high entropy. Also, ΔH has to do with the heat change that accompanies a reaction.
We know that both the entropy and the heat change can both either be positive or negative. Now we know that the equation ΔG = ΔH - TΔS can be used to ascertain whether or not a reaction will be spontaneous. If the result is negative, then the reaction will be spontaneous.
As such, when then it follows that the reaction is spontaneous at high temperatures Option A.
Learn more about spontaneous reaction:brainly.com/question/13790391
#SPJ1
Explanation:
The given data is as follows.
Mass of antimony = 19.75 g
Molar mass of Sb = 121.76 g/mol
Therefore, calculate number of moles of Sb as follows.
Moles of Sb = 
= 
= 0.162 mol
Mass of oxygen given is 6.5 g and molar mass of oxygen is 16 g/mol. Hence, moles of oxygen will be calculated as follows.
Moles of oxygen = 
= 
= 0.406 mol
Hence, ratio of moles of Sb and O will be as follows
Sb : O
1 : 2.5
We multiply both the ratio by 2 in order to get a whole number. Therefore, the ratio will be 2 : 5.
Thus, we can conclude that the empirical formula of the given oxide is
.
For the purpose we will here use the ideal gas law:
p×V=n×R×T
V= ?
n = 0.5 moleT= 273.15 K (at STP)
p= 101.325 kPa (at STP)
R is universal gas constant, and its value is 8.314 J/mol×K
Now when we have all necessary date we can calculate the number of moles:
V=nxRxT/p
V=0.5x8.314x273.15/101.325= 11.2 L = 11200 mL
Answer: D.