1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alja [10]
3 years ago
7

A random sample of 16 students selected from the student body of a large university had an average age of 25 years. We want to d

etermine if the average age of all the students at the university is significantly different from 24. Assume the distribution of the population of ages is normal with a standard deviation of 2 years. At a .05 level of significance, it can be concluded that the mean age is:
Mathematics
1 answer:
kenny6666 [7]3 years ago
6 0

Answer:

z=\frac{25-24}{\frac{2}{\sqrt{16}}}=2    

p_v =2*P(Z>2)=0.0455  

If we compare the p value and the significance level given \alpha=0.05 we see that p_v so we can conclude that we have enough evidence to reject the null hypothesis, and we can conclude that the true mean differs from 24 at 5% of significance

Step-by-step explanation:

Data given and notation  

\bar X=25 represent the sample mean

\sigma=2 represent the sample population deviation for the sample  

n=16 sample size  

\mu_o =24 represent the value that we want to test

\alpha=0.05 represent the significance level for the hypothesis test.  

t would represent the statistic (variable of interest)  

p_v represent the p value for the test (variable of interest)  

State the null and alternative hypotheses.  

We need to conduct a hypothesis in order to check if the true mean is different from 24, the system of hypothesis would be:  

Null hypothesis:\mu = 24  

Alternative hypothesis:\mu \neq 24  

If we analyze the size for the sample is < 30 but we know the population deviation so is better apply a z test to compare the actual mean to the reference value, and the statistic is given by:  

z=\frac{\bar X-\mu_o}{\frac{\sigma}{\sqrt{n}}}  (1)  

z-test: "Is used to compare group means. Is one of the most common tests and is used to determine if the mean is (higher, less or not equal) to an specified value".  

Calculate the statistic

We can replace in formula (1) the info given like this:  

z=\frac{25-24}{\frac{2}{\sqrt{16}}}=2    

P-value

Since is a two sided test the p value would be:  

p_v =2*P(Z>2)=0.0455  

Conclusion  

If we compare the p value and the significance level given \alpha=0.05 we see that p_v so we can conclude that we have enough evidence to reject the null hypothesis, and we can conclude that the true mean differs from 24 at 5% of significance

You might be interested in
What is m∠AEB?<br><br><br><br> Enter your answer in the box.
avanturin [10]
Angle AEB and angle CED are vertical angles, this means they equal each other, therefore we set their values as an equation and solve:

5x-10=3x+40
Subtract 3x to both sides
2x-10=40
Add 10 to both sides
2x=50
Divide both sides by 2
x=25

After we have gotten the value of x we can plug it in into the equation of angle AEB:

5x-10
Substitute x by 25
5(25)-10
Distribute
125-10
Substract
115

The measurement of angle AEB is 115

Hope it helped!, have a great day.
7 0
3 years ago
Can someone answer this please!!! I only have 5 mins and u will get Brainly too :)
luda_lava [24]
Better quality would help, have a good day/night
4 0
3 years ago
An elevator containing five people can stop at any of seven floors. What is the probability that no two people exit at the same
elena-s [515]

Answer:

Approximately 0.15 (360 / 2401.) (Assume that the choices of the 5 passengers are independent. Also assume that the probability that a passenger chooses a particular floor is the same for all 7 floors.)

Step-by-step explanation:

If there is no requirement that no two passengers exit at the same floor, each of these 5 passenger could choose from any one of the 7 floors. There would be a total of 7 \times 7 \times 7 \times 7 \times 7 = 7^{5} unique ways for these 5\! passengers to exit the elevator.

Assume that no two passengers are allowed to exit at the same floor.

The first passenger could choose from any of the 7 floors.

However, the second passenger would not be able to choose the same floor as the first passenger. Thus, the second passenger would have to choose from only (7 - 1) = 6 floors.

Likewise, the third passenger would have to choose from only (7 - 2) = 5 floors.

Thus, under the requirement that no two passenger could exit at the same floor, there would be only (7 \times 6 \times 5 \times 4 \times 3) unique ways for these two passengers to exit the elevator.

By the assumption that the choices of the passengers are independent and uniform across the 7 floors. Each of these 7^{5} combinations would be equally likely.

Thus, the probability that the chosen combination satisfies the requirements (no two passengers exit at the same floor) would be:

\begin{aligned}\frac{(7 \times 6 \times 5 \times 4 \times 3)}{7^{5}} \approx 0.15\end{aligned}.

5 0
2 years ago
Which expression represents the difference (6b+9) – (7b — 4)?
Kazeer [188]

Answer:

there arent any options but this is what i got

− b + 13

Step-by-step explanation:

7 0
3 years ago
3=g/-4-5 <br> solve for g
devlian [24]

Answer:

4

Step-by-step explanation:

so first you write down the problem and substitute the g by 3 after that you subtract

3 - 4 = 1 - 5 = 4

3 0
3 years ago
Other questions:
  • Which of the following is NOT an example of matter?
    13·1 answer
  • HELP ME ASAP!!!!!!!!!!!!!!! PLEASEEEEEEEEEEEEEEEEEEEEE
    13·2 answers
  • Find f(-2) for f(x)=3.2^x a.-36 b.3/4 c. 1/36 D. -12 If I get it right brainist Anser
    6·1 answer
  • Where n=6 equals, 6 is a solution.
    8·2 answers
  • In a certain county, the number of Charter Schools is eight less than twice the number of Alternative Schools. We know that ther
    14·1 answer
  • Why might you expect most absolute value equations to have two solutions? Why not three or four?
    10·1 answer
  • Find Lowest common factor of following questions .<br>56, 42, 28​
    12·1 answer
  • (08.01 LC)<br> Describe the process for calculating the volume of a pyramid. Use complete sentences.
    15·1 answer
  • Write two equivalent ratios using four different types of music in the data table showing. How do you know the ratios are equiva
    10·2 answers
  • The number of students using a certain university's online programs has been increasingly exponentially each year since 2010. Th
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!