Answer:
![= \left[\begin{array}{ccc}1344\\84\\28\end{array}\right] \left \begin{array}{ccc}{0 \ \leq age \leq 1 }\\{ 1 \ \leq age \leq 2 }\\{2 \ \leq age \leq 3}\end{array}\right](https://tex.z-dn.net/?f=%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1344%5C%5C84%5C%5C28%5Cend%7Barray%7D%5Cright%5D%20%20%5Cleft%20%5Cbegin%7Barray%7D%7Bccc%7D%7B0%20%5C%20%20%5Cleq%20%20age%20%20%20%5Cleq%20%201%20%7D%5C%5C%7B%201%20%5C%20%20%5Cleq%20%20age%20%20%20%5Cleq%20%202%20%7D%5C%5C%7B2%20%5C%20%20%5Cleq%20%20age%20%20%5Cleq%203%7D%5Cend%7Barray%7D%5Cright)
i.e after the first year ;
there 1344 members in the first age class
84 members for the second age class; and
28 members for the third age class
Step-by-step explanation:
We can deduce that the age distribution vector x represents the number of population members for each age class; Given that in each class of age there are 112 members present.
The current age distribution vector is as follows:
![x = \left[\begin{array}{ccc}1&1&2\\1&1&2\\1&1&2\end{array}\right] \left[\begin{array}{ccc}{0 \ \leq age \leq 1 }\\{ 0 \ \leq age \leq 2 }\\{0 \ \leq age \leq 3}\end{array}\right]](https://tex.z-dn.net/?f=x%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%262%5C%5C1%261%262%5C%5C1%261%262%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%7B0%20%5C%20%20%5Cleq%20%20age%20%20%20%5Cleq%20%201%20%7D%5C%5C%7B%200%20%5C%20%20%5Cleq%20%20age%20%20%20%5Cleq%20%202%20%7D%5C%5C%7B0%20%5C%20%20%5Cleq%20%20age%20%20%20%5Cleq%203%7D%5Cend%7Barray%7D%5Cright%5D)
Also , the age transition matrix is as follows:
![L = \left[\begin{array}{ccc}3&6&3\\0.75&0&0 \\0&0.25&0\end{array}\right]](https://tex.z-dn.net/?f=L%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%266%263%5C%5C0.75%260%260%20%5C%5C0%260.25%260%5Cend%7Barray%7D%5Cright%5D)
After 1 year ; the age distribution vector will be :
![x_2 =Lx_1 = \left[\begin{array}{ccc}3&6&3\\0.75&0&0 \\0&0.25&0\end{array}\right] \left[\begin{array}{ccc}1&1&2\\1&1&2\\1&1&2\end{array}\right]](https://tex.z-dn.net/?f=x_2%20%3DLx_1%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%266%263%5C%5C0.75%260%260%20%5C%5C0%260.25%260%5Cend%7Barray%7D%5Cright%5D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%262%5C%5C1%261%262%5C%5C1%261%262%5Cend%7Barray%7D%5Cright%5D)
![= \left[\begin{array}{ccc}1344\\84\\28\end{array}\right] \left \begin{array}{ccc}{0 \ \leq age \leq 1 }\\{ 1 \ \leq age \leq 2 }\\{2 \ \leq age \leq 3}\end{array}\right](https://tex.z-dn.net/?f=%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1344%5C%5C84%5C%5C28%5Cend%7Barray%7D%5Cright%5D%20%20%5Cleft%20%5Cbegin%7Barray%7D%7Bccc%7D%7B0%20%5C%20%20%5Cleq%20%20age%20%20%20%5Cleq%201%20%7D%5C%5C%7B%201%20%5C%20%20%5Cleq%20%20age%20%20%20%5Cleq%20%202%20%7D%5C%5C%7B2%20%5C%20%20%5Cleq%20%20age%20%20%20%5Cleq%20%203%7D%5Cend%7Barray%7D%5Cright)
Step-by-step explanation:
Given that,
The diameter of the merry-go-round, d = 14 feet
Time taken, t = 6 seconds
Radius, r = 7 feet
The linear speed of the merry-go-round is given by :

Also,

Where
is the angular speed
So,

Hence, his linear and angular speeds are 7.33 m/s and 1.04 rad/s.
Answer:
x=10/3 y=17/3
Step-by-step explanation:
Use substitution to solve your equation. Plug in y=2x-1 into y=1/2x+4. This makes (2x-1)=1/2x+4. Simplify this to get 3/2x-1=4. Simplify it again to get 3/2x=5. No one likes fractions so multiply both sides by 2 to get 3x=10. Simplify this and get x=10/3. Plus 10/3 into one of the equations. You can pick anyone but I picked y=2x-1. Because you know x=10/3, you put y=2(10/3)-1. Simplify this and get y=20/3-1. Convert 1 into a fraction and get y=20/3-3/3. Simplify this and get y=17/3.
Therefore,
x=10/3 y=17/3
Hoped this helps you
Answer:

Step-by-step explanation:
Consider the revenue function given by
. We want to find the values of each of the variables such that the gradient( i.e the first partial derivatives of the function) is 0. Then, we have the following (the explicit calculations of both derivatives are omitted).


From the first equation, we get,
.If we replace that in the second equation, we get

From where we get that
. If we replace that in the first equation, we get

So, the critical point is
. We must check that it is a maximum. To do so, we will use the Hessian criteria. To do so, we must calculate the second derivatives and the crossed derivatives and check if the criteria is fulfilled in order for it to be a maximum. We get that


We have the following matrix,
.
Recall that the Hessian criteria says that, for the point to be a maximum, the determinant of the whole matrix should be positive and the element of the matrix that is in the upper left corner should be negative. Note that the determinant of the matrix is
and that -10<0. Hence, the criteria is fulfilled and the critical point is a maximum