Answer: 150 Kg
/
Step-by-step explanation:
K.E =
m
K.E =
X 12 X 25
K.E = 150
The coordinates of the vertex for the quadratic function are given as follows: (100,10).
<h3>What is the vertex of a quadratic equation?</h3>
A quadratic equation is modeled by:

The vertex is given by:

In which:
In this problem, the function is given as follows:
y = -x²/1000 + x/5
y = -0.001x² + 0.2x.
Hence the coefficients are a = -0.001, b = 0.2, c = 0 and the coordinates of the vertex are given as follows:
More can be learned about the vertex of a quadratic function at brainly.com/question/24737967
#SPJ1
Answer:
B=5,0.
Step-by-step explanation:
It's not that hard. It's just that it might throw you off a bit with the R and the other things. Functions if you don't remember are where the coordinates don't have the same x and y. So since the y1 and y2 are different then to make it not a function, you have to make x1 and x2. To make it that b would have to be = to 5 and 0.
Y = |x² - 3x + 1|
y = x - 1
|x² - 3x + 1| = x - 1
|x² - 3x + 1| = ±1(x - 1)
|x² - 3x + 1| = 1(x - 1) or |x² - 3x + 1| = -1(x - 1)
|x² - 3x + 1| = 1(x) - 1(1) or |x² - 3x + 1| = -1(x) + 1(1)
|x² - 3x + 1| = x - 1 or |x² - 3x + 1| = -x + 1
x² - 3x + 1 = x - 1 or x² - 3x + 1 = -x + 1
- x - x + x + x
x² - 4x + 1 = -1 or x² - 2x + 1 = 1
+ 1 + 1 - 1 - 1
x² - 4x + 1 = 0 or x² - 2x + 0 = 0
x = -(-4) ± √((-4)² - 4(1)(1)) or x = -(-2) ± √((-2)² - 4(1)(0))
2(1) 2(1)
x = 4 ± √(16 - 4) or x = 2 ± √(4 - 0)
2 2
x = 4 ± √(12) or x = 2 ± √(4)
2 2
x = 4 ± 2√(3) or x = 2 ± 2
2 2
x = 2 ± √(3) or x = 1 ± 1
x = 2 + √(3) or x = 2 - √(3) or x = 1 + 1 or x = 1 - 1
x = 2 or x = 0
y = x - 1 or y = x - 1 or y = x - 1 or y = x - 1
y = (2 + √(3)) - 1 or y = (2 - √(3)) - 1 or y = 2 - 1 or y = 0 - 1
y = 2 - 1 + √(3) or y = 2 - 1 - √(3) or y = 1 or y = -1
y = 1 + √(3) or y = 1 - √(3) (x, y) = (2, 1) or (x, y) = (0, -1)
(x, y) = (2 ± √(3), 1 ± √(3))
The solution (0, -1) can be made by one function (y = x - 1) while the solution (2 ± √(3), 1 ± √(3)) can be made by another function (y = |x² - 3x + 1|). So the solution (2, 1) can be made by both functions, making the two solutions equal.
By definition of tangent,
tan(2<em>θ</em>) = sin(2<em>θ</em>) / cos(2<em>θ</em>)
Recall the double angle identities:
sin(2<em>θ</em>) = 2 sin(<em>θ</em>) cos(<em>θ</em>)
cos(2<em>θ</em>) = cos²(<em>θ</em>) - sin²(<em>θ</em>) = 2 cos²(<em>θ</em>) - 1
where the latter equality follows from the Pythagorean identity, cos²(<em>θ</em>) + sin²(<em>θ</em>) = 1. From this identity we can solve for the unknown value of sin(<em>θ</em>):
sin(<em>θ</em>) = ± √(1 - cos²(<em>θ</em>))
and the sign of sin(<em>θ</em>) is determined by the quadrant in which the angle terminates.
<em />
We're given that <em>θ</em> belongs to the third quadrant, for which both sin(<em>θ</em>) and cos(<em>θ</em>) are negative. So if cos(<em>θ</em>) = -4/5, we get
sin(<em>θ</em>) = - √(1 - (-4/5)²) = -3/5
Then
tan(2<em>θ</em>) = sin(2<em>θ</em>) / cos(2<em>θ</em>)
tan(2<em>θ</em>) = (2 sin(<em>θ</em>) cos(<em>θ</em>)) / (2 cos²(<em>θ</em>) - 1)
tan(2<em>θ</em>) = (2 (-3/5) (-4/5)) / (2 (-4/5)² - 1)
tan(2<em>θ</em>) = 24/7