1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pachacha [2.7K]
3 years ago
7

The system co2(g) + h2(g) ⇀↽ h2o(g) + co(g) is at equilibrium at some temperature. at equilibrium a 4.00 l vessel contains 1.00

mole co2, 1.00 mole h2, 2.40 moles h2o, and 2.40 moles co. how many moles of co2 must be added to the system to bring the equilibrium co concentration to 0.791 mol/l? answer in units of moles.
Chemistry
1 answer:
Marina CMI [18]3 years ago
4 0

<u>Answer:</u> The moles of CO_2 added to the system is 7.13 moles

<u>Explanation:</u>

We are given:

Moles of CO_2 at equilibrium = 1.00 moles

Moles of H_2 at equilibrium = 1.00 moles

Moles of H_2O at equilibrium = 2.40 moles

Moles of CO at equilibrium = 2.40 moles

Volume of the container = 4.00 L

Concentration is written as:

\text{Molarity}=\frac{\text{Moles}}{\text{Volume (in L)}}

The given chemical equation follows:

CO_2(g)+H_2(g)\rightleftharpoons H_2O(g)+CO(g)

The expression of K_c for above equation follows:

K_c=\frac{[CO][H_2O]}{[CO_2][H_2]}

Putting values in above equation, we get:

K_c=\frac{(\frac{2.40}{4.00})\times (\frac{2.40}{4.00})}{(\frac{1.00}{4.00})\times (\frac{1.00}{4.00})}\\\\K_c=5.76

To calculate the number of moles for given molarity, we use the equation:

\text{Molarity of the solution}=\frac{\text{Moles of solute}}{\text{Volume of solution (in L)}}

Molarity of CO = 0.791 mol/L

Volume of solution = 4.00 L

Putting values in above equation, we get:

0.791M=\frac{\text{Moles of CO}}{4.00L}\\\\\text{Moles of CO}=(0.791mol/\times 4.00L)=3.164mol

Extra moles of CO = (3.164 - 2.40) = 0.764 moles

Let the moles of CO_2 needed be 'x' moles.

Now, equilibrium gets re-established:

              CO_2(g)+H_2(g)\rightleftharpoons H_2O(g)+CO(g)

Initial:       1.00      1.00              2.40       2.40

At eqllm:   (0.236+x)   0.236      3.164     3.164

Again, putting the values in the expression of K_c, we get:

5.76=\frac{(\frac{3.164}{4.00})\times (\frac{3.164}{4.00})}{(\frac{0.236+x}{4.00})\times (\frac{0.236}{4.00})}\\\\5.76=\frac{10.011}{0.056+0.236x}\\\\x=7.13

Hence, the moles of CO_2 added to the system is 7.13 moles

You might be interested in
Oxidation number of au in kaucl4
DanielleElmas [232]
KauCl4 :

K = + 1 

au = + 7

Cl = - 2

hope this helps!

3 0
3 years ago
Read 2 more answers
A voltaic cell is created by using a copper cathode and a magnesium anode. The cathode is immersed in a solution of Cu2 ions, an
Vikki [24]

Answer:

As the reaction proceeds in the given voltaic cell, the Na₂SO₄ present in the salt bridge will dissociate into Na⁺ and SO₄²⁻ ions. As the copper ions in the solution are being deposited on the copper cathode as neutral copper atoms, the solution will become more negative, therefore the Na⁺ ions in the salt bridge will migrate into the the solution in order to maintain electrical neutrality. At the anode, as the Mg metal dissolve into the solution as Mg⁺² ions, the  solution will tend to become more positive. Therefore, the SO₄²⁻ ions present in the salt bridge will migrate into the solution in order to maintain electrical neutrality.

Explanation:

A voltaic or galvanic cell is an example of an electrochemical cell.

An electrochemical cell is a device that produces an electric current from chemical reactions occuring within it.

Electrochemical cells have two electrodes; the anode and the cathode. The anode is defined as the electrode where oxidation occurs while the cathode is the electrode where reduction occurs.

The voltaic cell uses two different metal electrodes each immersed in an electrolyte solution. The two electrodes are connected to each other by means of a wire which allows the flow of electrons from the anode to the cathode. The electrolytes are connected by means of a salt bridge which is a junction that connects the electrolytic solution in the anode and cathode compartment. The salt bridge usually consists of a strong electrolyte like NaCl, KCl, Na₂SO₄, etc.

The electrolyte in the salt bridge serves two purposes: it completes the circuit by providing a path for electron flow and it maintains electrical neutrality in both solutions by allowing ions to migrate between them.

As the reaction proceeds in the given voltaic cell above, the Na₂SO₄ present in the salt bridge will dissociate into Na⁺ and SO₄²⁻ ions. As the copper ions in the solution are being deposited on the copper cathode as neutral copper atoms, the solution will become more negative, therefore the Na⁺ ions in the salt bridge will migrate into the the solution in order to maintain electrical neutrality. Also, at the anode, as the Mg metal dissolve into the solution as Mg⁺² ions, the  solution will tend to become more positive. Therefore, the SO₄²⁻ ions present in the salt bridge will migrate into the solution in order to maintain electrical neutrality.

5 0
3 years ago
Why is a phenol more acidic than a regular alcohol? Group of answer choices
Aleks [24]

Answer:

a.Phenols have the ability to spread out the negative charge that forms.

Explanation:

This happens because of  the aromatic ring the phenols have. When loosing the proton, the anion formed have different resonance isomers due to the double bonds in the aromatic ring. This resonance makes the anion more stable and prevents the reaction going backwards.

On the other hand, regular alcohol doesn't have resonace and the reaction of loosing the proton goes leftward and righward: is in equilibrium.

That equilibrium decreases the acidity of the alcohol.

3 0
3 years ago
A rubber balloon was filled with helium at 25.0˚C and placed in a beaker of liquid nitrogen at -196.0˚C. The volume of the cold
Ksenya-84 [330]

Answer:

The volume of helium at 25.0 °C is 60.3 cm³.

Explanation:

In order to work with ideal gases we need to consider absolute temperatures (Kelvin). To convert Celsius to Kelvin we use the following expression:

K = °C + 273.15

The initial and final temperatures are:

T₁ = 25.0 + 273.15 = 298.2 K

T₂ = -196.0 + 273.15 = 77.2 K

The volume at 77.2 K is V₂ = 15.6 cm³. To calculate V₁ in isobaric conditions we can use Charle's Law.

\frac{V_{1}}{T_{1}} =\frac{V_{2}}{T_{2}} \\V_{1}=\frac{V_{2}}{T_{2}} \times T_{1}=\frac{15.6cm^{3} }{77.2K} \times 298.2K=60.3cm^{3}

3 0
3 years ago
What force makes a ball rolling along the ground slow down
Mashcka [7]
Friction is the force that slows down a ball, if their were no friction, it would not stop. 

Answer: friction

6 0
3 years ago
Other questions:
  • To show the electron configuration for an atom, when would it be better to use an orbital notation than to use a written configu
    8·2 answers
  • Please help!<br>Gravity and magnetism are examples of?​
    8·1 answer
  • Which picture shows the correct flow of electrical current
    8·2 answers
  • In the periodic table, the elements that are adjacent to the "stair step" are called _____. actinide series nonmetals metalloids
    14·1 answer
  • An emulsifying agent is typically characterized by having ____. a. one polar end c. two polar ends b. one nonpolar end d. one po
    13·1 answer
  • Which of the following explains the process of radiation?
    10·1 answer
  • The electronegative of phosphorus is
    11·2 answers
  • Please help me with this
    8·1 answer
  • Answer the following questions for H2CrO4:
    9·1 answer
  • propane (c3h8) is burned with air. for each case, obtain the balanced reaction equation for complete combustion a. with the theo
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!