Answer:
In 1897, the British physicist J. J. Thomson (1856–1940) proved that atoms were not the most basic form of matter. He demonstrated that cathode rays could be deflected, or bent, by magnetic or electric fields, which indicated that cathode rays consist of charged particles (Figure 2.2.2 ). More important, by measuring the extent of the deflection of the cathode rays in magnetic or electric fields of various strengths, Thomson was able to calculate the mass-to-charge ratio of the particles. These particles were emitted by the negatively charged cathode and repelled by the negative terminal of an electric field. Because like charges repel each other and opposite charges attract, Thomson concluded that the particles had a net negative charge; these particles are now called electrons. Most relevant to the field of chemistry, Thomson found that the mass-to-charge ratio of cathode rays is independent of the nature of the metal electrodes or the gas, which suggested that electrons were fundamental components of all atoms.
Explanation:
The reaction is missing the Zn(s) in the reactants. The stoichiometry of the copper/zinc is 1 mole to 1 mole
Answer:
It s a pure substance.
Explanation:
Can only be separated into its different elements by chemical means because it is connected by a chemical bond.
Answer:
Hydrogen Bond
Explanation:
Hydrogen bond interactions are formed between the hydrogen atom bonded to most electronegative atoms (i.e. F, O and N) of one molecule and most electronegative atom (i.e. F, O and N) of another molecule.
In this interaction the hydrogen atom has partial positive charge and electronegative atom has partial negative charge.
Answer:

Explanation:
There are no molecules in NaCl, because it consists only of ions.
However, we can calculate the number of formula units (FU) of NaCl.
Step 1. Calculate the moles of NaCl

Step 2. Convert moles to formula units

There are
in 3.6 g of NaCl.