Combine:
<span>g+24.50
</span><span>7g- 52.34
---------------
8g - 27.84 <= answer</span>
Answer:
a = -3
Step-by-step explanation:
Solve for a:
2 (a + 5) - 1 = 3
Hint: | Distribute 2 over a + 5.
2 (a + 5) = 2 a + 10:
(2 a + 10) - 1 = 3
Hint: | Group like terms in 2 a - 1 + 10.
Grouping like terms, 2 a - 1 + 10 = 2 a + (10 - 1):
(2 a + (10 - 1)) = 3
Hint: | Evaluate 10 - 1.
10 - 1 = 9:
2 a + 9 = 3
Hint: | Isolate terms with a to the left hand side.
Subtract 9 from both sides:
2 a + (9 - 9) = 3 - 9
Hint: | Look for the difference of two identical terms.
9 - 9 = 0:
2 a = 3 - 9
Hint: | Evaluate 3 - 9.
3 - 9 = -6:
2 a = -6
Hint: | Divide both sides by a constant to simplify the equation.
Divide both sides of 2 a = -6 by 2:
(2 a)/2 = (-6)/2
Hint: | Any nonzero number divided by itself is one.
2/2 = 1:
a = (-6)/2
Hint: | Reduce (-6)/2 to lowest terms. Start by finding the GCD of -6 and 2.
The gcd of -6 and 2 is 2, so (-6)/2 = (2 (-3))/(2×1) = 2/2×-3 = -3:
Answer: a = -3
Answer: 
Step-by-step explanation:
Corresponding sides of similar triangles are proportional, so:

Okay, here we have this:
Considering the provided information, we are going to calculate the requested value, so we obtain the following rule of three:

Solving for x:

Finally we obtain that 87.5mL of water should be used for 250g of plaster.
Answer:
The equations 3·x - 6·y = 9 and x - 2·y = 3 are the same
The possible solution are the points (infinite) on the line of the graph representing the equation 3·x - 6·y = 9 or x - 2·y = 3 which is the same line
Step-by-step explanation:
The given linear equations are;
3·x - 6·y = 9...(1)
x - 2·y = 3...(2)
The solution of a system of two linear equations with two unknowns can be found graphically by plotting the two equations and finding the coordinates of the point of intersection of the line graphs
Making 'y' the subject of both equations gives;
For equation (1);
3·x - 6·y = 9
3·x - 9 = 6·y
y = x/2 - 3/2
For equation (2);
x - 2·y = 3
x - 3 = 2·y
y = x/2 - 3/2
We observe that the two equations are the same and will have an infinite number of solutions