It's difficult to make out what the force and displacement vectors are supposed to be, so I'll generalize.
Let <em>θ</em> be the angle between the force vector <em>F</em> and the displacement vector <em>r</em>. The work <em>W</em> done by <em>F</em> in the direction of <em>r</em> is
<em>W</em> = <em>F</em> • <em>r</em> cos(<em>θ</em>)
The cosine of the angle between the vectors can be obtained from the dot product identity,
<em>a</em> • <em>b</em> = ||<em>a</em>|| ||<em>b</em>|| cos(<em>θ</em>) ==> cos(<em>θ</em>) = (<em>a</em> • <em>b</em>) / (||<em>a</em>|| ||<em>b</em>||)
so that
<em>W</em> = (<em>F</em> • <em>r</em>)² / (||<em>F</em>|| ||<em>r</em>||)
For instance, if <em>F</em> = 3<em>i</em> + <em>j</em> + <em>k</em> and <em>r</em> = 7<em>i</em> - 7<em>j</em> - <em>k</em> (which is my closest guess to the given vectors' components), then the work done by <em>F</em> along <em>r</em> is
<em>W</em> = ((3<em>i</em> + <em>j</em> + <em>k</em>) • (7<em>i</em> - 7<em>j</em> - <em>k</em>))² / (√(3² + 1² + 1²) √(7² + (-7)² + (-1)²))
==> <em>W</em> ≈ 5.12 J
(assuming <em>F</em> and <em>r</em> are measured in Newtons (N) and meters (m), respectively).
Answer:
11700 mm²
Step-by-step explanation:
A rectangle is a quadrilateral with two equal, opposite and parallel sides. Each of the angles in a rectangle is 90°.
The horizontal distance of the rectangle = r + r + r + r = 4r
The vertical distance = r + h + r = 2r + h
Where h is the distance between the midpoint of the 2 up circles and the midpoint of the down circle.
Using Pythagoras:
(2r)² = h² + r²
h² + r² = 4r²
h² = 3r²
h = √3r²
h = r√3
Vertical distance = 2r + h = 2r + r√3
Area of rectangle = vertical distance * horizontal distance
Area = 4r * (2r + r√3) = 8r² + 4r²√3 = 4r²(2 + √3)
Substituting:
Area = 4r²(2 + √3) = 4(28²)(2 + √3) = 11703.711 mm²
Area = 11700 mm² to 3 s.f