Answer:
The value of n is -6
Step-by-step explanation:
- If the function f(x) is translated k units up, then its image is g(x) = f(x) + k
- If the function f(x) is translated k units down, then its image is g(x) = f(x) - k
- The vertex form of the quadratic function is f(x) = a(x - h)² + k, where a is the coefficient of x² and (h, k) is the vertex
∵ k(x) = x²
→ Its graph is a parabola with vertex (0, 0)
∴ The vertex of the prabola which represents it is (0, 0)
∵ The given graph is the graph of p(x)
∵ Its vertex is (0, -6)
∴ h = 0 and k = -6
∵ a = 1
→ Substitute them in the form above
∴ p(x) = 1(x - 0)² + -6
∴ p(x) = x² - 6
→ Substitute x² by k(x)
∴ p(x) = k(x) - 6
∵ p(x) = k(x) + n
→ By comparing the two right sides
∴ n = -6
∴ The value of n is -6
Look at the attached figure for more understanding
The red parabola represents k(x)
The blue parabola represents p(x)
Answer:
see the attachments for the two solutions
Step-by-step explanation:
When the given angle is opposite the shorter of the given sides, there will generally be two solutions. The exception is the case where the triangle is a right triangle (the ratio of the given sides is equal to the sine of the given angle). If the given angle is opposite the longer of the given sides, there is only one solution.
When a side and its opposite angle are given, as here, the law of sines can be used to solve the triangle(s). When the given angle is included between two given sides, the law of cosines can be used to solve the (one) triangle.
___
Here, the law of sines can be used to solve the triangle:
A = arcsin(a/c·sin(C)) = arcsin(25/24·sin(70°)) = 78.19° or 101.81°
B = 180° -70° -A = 31.81° or 8.19°
b = 24·sin(B)/sin(70°) = 13.46 or 3.64
Answer:16/1
Step-by-step explanation:
Answer:

Step-by-step explanation:
An equation in the vertex form is written as

Where the point (h, k) is the vertex of the equation.
For an equation in the form
the x coordinate of the vertex is defined as

In this case we have the equation
.
Where

Then the x coordinate of the vertex is:

The y coordinate of the vertex is replacing the value of
in the function

Then the vertex is:

Therefore The encuacion excrita in the form of vertice is:

To find the coefficient a we substitute a point that belongs to the function 
The point (0, -1) belongs to the function. Thus.


<em>Then the written function in the form of vertice is</em>
