Answer:
A
Step-by-step explanation:

Answer:
Since there are 4 green bars for every 3 red bars and we are trying to find the number of red bars if there are 200 green bars, we can create the ratio:
4
x
:
3
y
Where x is equal to the number of green bars and y
is the number of red bars.
We know the number of green bars is equal to 200, so we can divide it by 4, giving us:
200
/4=50
Then we can solve for y
, the number of red bars.
// Multiple y by 50
3
⋅
50
=
150
So for every 4 green bars, there are 3 red bars.
For every 200 green bars, there are 150 red bars
Step-by-step explanation:
Answer: A
Step-by-step explanation: Just sreach it up BURH
Answer:
(2,4)
Step-by-step explanation:
i just took the test your welcome
XZ ≅ EG and YZ ≅ FG is enough to make triangles to be congruent by HL. Option b is correct.
Two triangles ΔXYZ and ΔEFG, are given with Y and F are right angles.
Condition to be determined that proves triangles to be congruent by HL.
<h3>What is HL of triangle?</h3>
HL implies the hypotenuse and leg pair of the right-angle triangle.
Here, two right-angle triangles ΔXYZ and ΔEFG are congruent by HL only if their hypotenuse and one leg are equal, i.e. XZ ≅ EG and YZ ≅ FG respectively.
Thus, XZ ≅ EG and YZ ≅ FG are enough to make triangles congruent by HL.
Learn more about HL here:
brainly.com/question/3914939
#SPJ1
In ΔXYZ and ΔEFG, angles Y and F are right angles. Which set of congruence criteria would be enough to establish that the two triangles are congruent by HL?
A.
XZ ≅ EG and ∠X ≅ ∠E
B.
XZ ≅ EG and YZ ≅ FG
C.
XZ ≅ FG and ∠X ≅ ∠E
D.
XY ≅ EF and YZ ≅ FG