A rumor spreads through a small town. Let y(t) be the fraction of the population that has heard the rumor at time t and assume t
hat the rate at which the rumor spreads is proportional to the product of the fraction y of the population that has heard the rumor and the fraction 1−y that has not yet heard the rumor. a. Write the differential equation satisfied by y in terms of proportionality k.
b. Find k (in units of day−1, assuming that 10% of the population knows the rumor at time t=0 and 40% knows it at time t=2 days.
c. Using the assumptions in part (b), determine when 75% of the population will know the rumor.
d. Plot the direction field for the differential equation and draw the curve that fits the solution y(0)=0.1 and y(0)=0.5.
Let y(t) be the fraction of the population that has heard the rumor at time t and assume that the rate at which the rumor spreads is proportional to the product of the fraction y of the population that has heard the rumor and the fraction 1−y that has not yet heard the rumor.
a)
where k is the constant of proportionality, dy/dt = rate at which the rumor spreads
Exponential growth refers to an increase based on a constant multiplicative rate of change over equal increments of time,that is a percent increase of the original amount over time.