The fourth option is the answer. When graphed, Min is 2, Q1 is 3, Median is 7, Q3 is 11, and Max is 24. The fourth option is the one that follow all of those!
You didn’t provide a picture
Answer:
(10,0)
Step-by-step explanation:
i hoped this helped you
Step-by-step explanation:
<h3>
Need to FinD :</h3>
- We have to find the value of (sinθ + cosθ)/(sinθ - cosθ), when 13 cosθ - 5 = 0.

Here, we're asked to find out the value of (sinθ + cosθ)/(sinθ - cosθ), when 13 cosθ - 5 = 0. In order to find the solution we're gonna use trigonometric ratios to find the value of sinθ and cosθ. Let us consider, a right angled triangle, say PQR.
Where,
- PQ = Opposite side
- QR = Adjacent side
- RP = Hypotenuse
- ∠Q = 90°
- ∠C = θ
As we know that, 13 cosθ - 5 = 0 which is stated in the question. So, it can also be written as cosθ = 5/13. As per the cosine ratio, we know that,

Since, we know that,
- cosθ = 5/13
- QR (Adjacent side) = 5
- RP (Hypotenuse) = 13
So, we will find the PQ (Opposite side) in order to estimate the value of sinθ. So, by using the Pythagoras Theorem, we will find the PQ.
Therefore,



∴ Hence, the value of PQ (Opposite side) is 12. Now, in order to determine it's value, we will use the sine ratio.

Where,
- Opposite side = 12
- Hypotenuse = 13
Therefore,

Now, we have the values of sinθ and cosθ, that are 12/13 and 5/13 respectively. Now, finally we will find out the value of the following.

- By substituting the values, we get,


∴ Hence, the required answer is 17/7.