The numerical value of the mean voltage is 25.47 V
To find the numerical value of the mean voltage, V of V(t) = 40 sin(t), we integrate V(t) with respect to t over the interval [0.π]
So,
![V = \frac{1}{\pi } \int\limits^\pi _0 {V(t)} \, dt \\V = \frac{1}{\pi } \int\limits^\pi _0 {40sint} \, dt \\V = \frac{1}{\pi } [-40cost]_{0}{\pi } \\V = \frac{1}{\pi } -[40cos\pi - 40cos0]\\\\V = \frac{1}{\pi } (-[40 X (-1) - 40 X 1})\\V = -\frac{1}{\pi } [-40 - 40]\\V = \frac{80}{\pi } \\V = 25.465 V](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%7B1%7D%7B%5Cpi%20%7D%20%5Cint%5Climits%5E%5Cpi%20_0%20%7BV%28t%29%7D%20%5C%2C%20dt%20%5C%5CV%20%3D%20%5Cfrac%7B1%7D%7B%5Cpi%20%7D%20%5Cint%5Climits%5E%5Cpi%20_0%20%7B40sint%7D%20%5C%2C%20dt%20%5C%5CV%20%3D%20%5Cfrac%7B1%7D%7B%5Cpi%20%7D%20%5B-40cost%5D_%7B0%7D%7B%5Cpi%20%7D%20%20%5C%5CV%20%3D%20%5Cfrac%7B1%7D%7B%5Cpi%20%7D%20-%5B40cos%5Cpi%20%20-%2040cos0%5D%5C%5C%5C%5CV%20%3D%20%5Cfrac%7B1%7D%7B%5Cpi%20%7D%20%28-%5B40%20X%20%28-1%29%20-%2040%20X%201%7D%29%5C%5CV%20%3D%20-%5Cfrac%7B1%7D%7B%5Cpi%20%7D%20%5B-40%20-%2040%5D%5C%5CV%20%3D%20%5Cfrac%7B80%7D%7B%5Cpi%20%7D%20%5C%5CV%20%3D%2025.465%20V)
V ≅ 25.47 V
So, the numerical value of the mean voltage is 25.47 V
Learn more about mean volatage here:
brainly.com/question/17928028
Let's start with 14, shall we? Alright, so we know that positive and negative numbers are both on opposite sides of zero- negatives on the left, positives on the right. We see that we have a positive and negative. That lets us know that we have these two values on opposite sides. As for one, we see that it's (going to assume it's negative, as that's what it looks like. If not, do the same thing on the other side.) 5/8, we can only do fourths here, it seems, because there are four intervals between the numbers. Here's where the beauty of equivalent fractions comes in. 5/8 actually equals 2.5/4 if you divide the top and bottom by 2. Now it should be easy to graph it. A little after 1, and then in between 2 and three. Hope this helps.
Divide the length of the segment by 4
Multiply 12 x 12 which is 144. And then you divide that by 6 and you get 24