Answer: is 2.11
explanation: We have to do 12.66/6=2.11
we have to divide
The answer is very simple.
Just divide 36 by 80.
36/80 = .45
turn .45 into a percent.
There is a %45 chance that it will land on section 2.
Answer:
- L(t) = 727.775 -51.875cos(2π(t +11)/365)
- 705.93 minutes
Step-by-step explanation:
a) The midline of the function is the average of the peak values:
(675.85 +779.60)/2 = 727.725 . . . minutes
The amplitude of the function is half the difference of the peak values:
(779.60 -675.85)/2 = 51.875 . . . minutes
Since the minimum of the function is closest to the origin, we choose to use the negative cosine function as the parent function.
Where t is the number of days from 1 January, we want to shift the graph 11 units to the left, so we will use (t+11) in our function definition.
Since the period is 365 days, we will use (2π/365) as the scale factor for the argument of the cosine function.
Our formula is ...
L(t) = 727.775 -51.875cos(2π(t +11)/365)
__
b) L(55) ≈ 705.93 minutes
By letting

we get derivatives


a) Substitute these into the differential equation. After a lot of simplification, the equation reduces to

Examine the lowest degree term
, which gives rise to the indicial equation,

with roots at r = 0 and r = 4/5.
b) The recurrence for the coefficients
is

so that with r = 4/5, the coefficients are governed by

c) Starting with
, we find


so that the first three terms of the solution are

RemarkIf you don't start exactly the right way, you can get into all kinds of trouble. This is just one of those cases. I think the best way to start is to divide both terms by x^(1/2)
Step OneDivide both terms in the numerator by x^(1/2)
y= 6x^(1/2) + 3x^(5/2 - 1/2)
y =6x^(1/2) + 3x^(4/2)
y = 6x^(1/2) + 3x^2 Now differentiate that. It should be much easier.
Step TwoDifferentiate the y in the last step.
y' = 6(1/2) x^(- 1/2) + 3*2 x^(2 - 1)
y' = 3x^(-1/2) + 6x I wonder if there's anything else you can do to this. If there is, I don't see it.
I suppose this is possible.
y' = 3/x^(1/2) + 6x
y' =

Frankly I like the first answer better, but you have a choice of both.