Answer:
Circle 1=6x+2y
Rectangle 4 = 3x+y
Circle 4 = 5x
Step-by-step explanation:
4x+3y and 2x-y can be added to find result for the circle.
Let C1 represent circle 1
4x+3y+2x-y=C1\\
Combining\:like\:terms\\
4x+2x+3y-y=C1
6x+2y=C1
So, The result is: C1=6x+2y
Now, We need to solve:
Let R1 represent rectangle 4
x+4y + R1 = 4x+5y
R1=4x+5y-(x+4y)
R1=4x+5y-x-4y
R1=4x-x+5y-4y
R1=3x+y
So, Solving x+4y + R1 = 4x+5y, We get R1 = 3x+y
Now, We need to solve the equation:
Let C4= Circle 4
2x-y+3x+y=C4
Combining the like terms
2x+3x-y+y=C4
5x=C4
So, Solving 2x-y+3x+y=C4 we get C4 = 5x
97.45 • 0.18 = 17.54. 97.45 + 17.54 = 114.99. I think this is right.
Answer is a. (2,2)
Because for it to be a function each x value can only have one y value. And in the chart it says x is 2 and 8
Answer:
![W=\{\left[\begin{array}{ccc}a+2b\\b\\-3a\end{array}\right]: a,b\in\mathbb{R} \}](https://tex.z-dn.net/?f=W%3D%5C%7B%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da%2B2b%5C%5Cb%5C%5C-3a%5Cend%7Barray%7D%5Cright%5D%3A%20a%2Cb%5Cin%5Cmathbb%7BR%7D%20%5C%7D)
Observe that if the vector
is in W then it satisfies:
![\left[\begin{array}{ccc}x\\y\\z\end{array}\right]=\left[\begin{array}{c}a+2b\\b\\-3a\end{array}\right]=a\left[\begin{array}{c}1\\0\\-3\end{array}\right]+b\left[\begin{array}{c}2\\1\\0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Da%2B2b%5C%5Cb%5C%5C-3a%5Cend%7Barray%7D%5Cright%5D%3Da%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D1%5C%5C0%5C%5C-3%5Cend%7Barray%7D%5Cright%5D%2Bb%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%5C%5C1%5C%5C0%5Cend%7Barray%7D%5Cright%5D)
This means that each vector in W can be expressed as a linear combination of the vectors ![\left[\begin{array}{c}1\\0\\-3\end{array}\right], \left[\begin{array}{c}2\\1\\0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D1%5C%5C0%5C%5C-3%5Cend%7Barray%7D%5Cright%5D%2C%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%5C%5C1%5C%5C0%5Cend%7Barray%7D%5Cright%5D)
Also we can see that those vectors are linear independent. Then the set
is a basis for W and the dimension of W is 2.